Chemical composition of oscillatory zoned garnets from the large-scale Mengya’a Pb–Zn skarn deposit: implications for fluid physicochemical conditions and formation

The Mengya’a Lead–zinc deposit is a large skarn deposit in the north of the eastern segment of Gangdese metallogenic belt. The garnet is the main altered mineral in the Mengya’a area. The color of the garnet varies from chartreuse to dark yellow brown and to russet. The brown garnet (Grt1) is relate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta geochimica 2022-06, Vol.41 (3), p.536-550
Hauptverfasser: Zhang, Yan, Chen, Cuihua, Yang, Yulong, Kang, Xuhao, Gu, Ying, Lai, Xiang, Chen, Xiaojie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 550
container_issue 3
container_start_page 536
container_title Acta geochimica
container_volume 41
creator Zhang, Yan
Chen, Cuihua
Yang, Yulong
Kang, Xuhao
Gu, Ying
Lai, Xiang
Chen, Xiaojie
description The Mengya’a Lead–zinc deposit is a large skarn deposit in the north of the eastern segment of Gangdese metallogenic belt. The garnet is the main altered mineral in the Mengya’a area. The color of the garnet varies from chartreuse to dark yellow brown and to russet. The brown garnet (Grt1) is related to pyrrhotite and chalcopyrite, and the green garnet (Grt2) is associated with lead–zinc mineralization. LA-ICP-MS is the induced coupled plasma mass spectrometry. This paper has used this technique to investigate Grt1 and Grt2. Grt1 develops core–rim textures with strong oscillation zone occurring in rim, whereas Grt2 lacks core–rim textures and featured by oscillation zone. LA–ICP–MS analysis shows that garnets of Mengya’a are rich in CaO (29.90–37.52 %) and FeO (21.17–33.35 %), but low in Al 2 O 3 (0.05–4.85 %). The calculated end members belong to grandite (grossular–andradite) garnets andradite. The negative Al (IV) versus Fe 3+ , positive Al (IV) versus total Al stoichiometric number, the positive Al (IV) versus Fe 3+ , and the negative Al (IV) versus total REE, all indicate that the substitution of REEs in garnets is controlled by YAG. All Garnets are depleted in large lithophile elements (e.g., Rb = 0.00–4.01 ppm, Sr = 0.03–8.56 ppm). The total REE in Grt1 core is high (∑REE = 233–625 ppm), with HREE enriched pattern (LREE/HREE = 0.33–1.69) and weak negative Eu anomalies (δEu = 0.21–0.47). In contrast, the total REEs in the Grt1 rim and Grt2 are low (ΣREE = 12.4–354 ppm; ΣREE = 21.0–65.3 ppm), with LREE enriched pattern (LREE/HREE = 0.54–34.4; LREE/HREE = 11.4–682) and positive Eu anomalies (δEu = 0.35–27.2; δEu = 1.02–30.7). After data compilation of garnet chemicals, we found that the early fluid responsible for the core of Grt1 was a relatively closed and chloride-depleted fluid system. It was close-to-neutral, with a low water–rock ratio. The core of garnet was formed by fluid diffusion in metasomatic processes. The fluid was changed into a relatively open system with reduced, chloride-rich, and weak-acid fluid. It was fluid infiltration and metasomatism that resulted in the formation of Grt1 rim and Grt2.
doi_str_mv 10.1007/s11631-022-00532-3
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_zgdqhx_e202203013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zgdqhx_e202203013</wanfj_id><sourcerecordid>zgdqhx_e202203013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-28591de4bb1aff604cf2efb1c8be36d1ce46ed526f0651c2448542773e5add33</originalsourceid><addsrcrecordid>eNp9kbtuFDEUhkcIJKKQF6CyREUx4PvO0KEVNykoFKloLI99POswY0_sWcGmyjtQ8QY8V54Ez06k7ah8iu__jnX-qnpJ8BuC8eZtJkQyUmNKa4wFozV7Up1RJkW94W37tMy4lTVuhXxeXeR8gzEmjZScN2fV3-0ORm_0gEwcp5j97GNA0aGYjR8GPcd0QHcxgEW9TgHmjFyKI5p3gAadeqhzCQP6CqE_6If7Pxp96x7uf38PKP8oAWThaH2H_DgNZdHiL46YkBv23qJpd8jeRHP6RrB-hXSwCzgeMy-qZ04PGS4e3_Pq-uOH6-3n-vLq05ft-8vaMMznmjaiJRZ41xHtnMTcOAquI6bpgElLDHAJVlDpsBTE0HIEwelmw0Boaxk7r16v2p86OB16dRP3KZSF6q63t7tfCmi5M2aYLOyrlZ1SvN1Dnk8wlQ0jgrKGF4qulEkx5wROTcmPOh0UwWrpT639qeJVx_7UomZrKBc49JBO6v-k_gFzGaNk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2683152384</pqid></control><display><type>article</type><title>Chemical composition of oscillatory zoned garnets from the large-scale Mengya’a Pb–Zn skarn deposit: implications for fluid physicochemical conditions and formation</title><source>SpringerLink</source><source>Alma/SFX Local Collection</source><creator>Zhang, Yan ; Chen, Cuihua ; Yang, Yulong ; Kang, Xuhao ; Gu, Ying ; Lai, Xiang ; Chen, Xiaojie</creator><creatorcontrib>Zhang, Yan ; Chen, Cuihua ; Yang, Yulong ; Kang, Xuhao ; Gu, Ying ; Lai, Xiang ; Chen, Xiaojie</creatorcontrib><description>The Mengya’a Lead–zinc deposit is a large skarn deposit in the north of the eastern segment of Gangdese metallogenic belt. The garnet is the main altered mineral in the Mengya’a area. The color of the garnet varies from chartreuse to dark yellow brown and to russet. The brown garnet (Grt1) is related to pyrrhotite and chalcopyrite, and the green garnet (Grt2) is associated with lead–zinc mineralization. LA-ICP-MS is the induced coupled plasma mass spectrometry. This paper has used this technique to investigate Grt1 and Grt2. Grt1 develops core–rim textures with strong oscillation zone occurring in rim, whereas Grt2 lacks core–rim textures and featured by oscillation zone. LA–ICP–MS analysis shows that garnets of Mengya’a are rich in CaO (29.90–37.52 %) and FeO (21.17–33.35 %), but low in Al 2 O 3 (0.05–4.85 %). The calculated end members belong to grandite (grossular–andradite) garnets andradite. The negative Al (IV) versus Fe 3+ , positive Al (IV) versus total Al stoichiometric number, the positive Al (IV) versus Fe 3+ , and the negative Al (IV) versus total REE, all indicate that the substitution of REEs in garnets is controlled by YAG. All Garnets are depleted in large lithophile elements (e.g., Rb = 0.00–4.01 ppm, Sr = 0.03–8.56 ppm). The total REE in Grt1 core is high (∑REE = 233–625 ppm), with HREE enriched pattern (LREE/HREE = 0.33–1.69) and weak negative Eu anomalies (δEu = 0.21–0.47). In contrast, the total REEs in the Grt1 rim and Grt2 are low (ΣREE = 12.4–354 ppm; ΣREE = 21.0–65.3 ppm), with LREE enriched pattern (LREE/HREE = 0.54–34.4; LREE/HREE = 11.4–682) and positive Eu anomalies (δEu = 0.35–27.2; δEu = 1.02–30.7). After data compilation of garnet chemicals, we found that the early fluid responsible for the core of Grt1 was a relatively closed and chloride-depleted fluid system. It was close-to-neutral, with a low water–rock ratio. The core of garnet was formed by fluid diffusion in metasomatic processes. The fluid was changed into a relatively open system with reduced, chloride-rich, and weak-acid fluid. It was fluid infiltration and metasomatism that resulted in the formation of Grt1 rim and Grt2.</description><identifier>ISSN: 2096-0956</identifier><identifier>EISSN: 2365-7499</identifier><identifier>DOI: 10.1007/s11631-022-00532-3</identifier><language>eng</language><publisher>Heidelberg: Science Press</publisher><subject>7th Youth Geoscience Forum of China ; Aluminum oxide ; Anomalies ; Calcium ferrous silicates ; Chalcopyrite ; Chemical composition ; Chlorides ; Colour ; Depletion ; Earth and Environmental Science ; Earth Sciences ; Fluid infiltration ; Garnet ; Geochemistry ; Inductively coupled plasma mass spectrometry ; Iron ; Lead ; Mass spectrometry ; Mass spectroscopy ; Metallogenesis ; Mineralization ; Open systems ; Original Article ; Physicochemical processes ; Pyrrhotite ; Zinc</subject><ispartof>Acta geochimica, 2022-06, Vol.41 (3), p.536-550</ispartof><rights>The Author(s), under exclusive licence to Science Press and Institute of Geochemistry, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Science Press and Institute of Geochemistry, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c304t-28591de4bb1aff604cf2efb1c8be36d1ce46ed526f0651c2448542773e5add33</cites><orcidid>0000-0001-7906-8419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zgdqhx-e/zgdqhx-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11631-022-00532-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11631-022-00532-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Chen, Cuihua</creatorcontrib><creatorcontrib>Yang, Yulong</creatorcontrib><creatorcontrib>Kang, Xuhao</creatorcontrib><creatorcontrib>Gu, Ying</creatorcontrib><creatorcontrib>Lai, Xiang</creatorcontrib><creatorcontrib>Chen, Xiaojie</creatorcontrib><title>Chemical composition of oscillatory zoned garnets from the large-scale Mengya’a Pb–Zn skarn deposit: implications for fluid physicochemical conditions and formation</title><title>Acta geochimica</title><addtitle>Acta Geochim</addtitle><description>The Mengya’a Lead–zinc deposit is a large skarn deposit in the north of the eastern segment of Gangdese metallogenic belt. The garnet is the main altered mineral in the Mengya’a area. The color of the garnet varies from chartreuse to dark yellow brown and to russet. The brown garnet (Grt1) is related to pyrrhotite and chalcopyrite, and the green garnet (Grt2) is associated with lead–zinc mineralization. LA-ICP-MS is the induced coupled plasma mass spectrometry. This paper has used this technique to investigate Grt1 and Grt2. Grt1 develops core–rim textures with strong oscillation zone occurring in rim, whereas Grt2 lacks core–rim textures and featured by oscillation zone. LA–ICP–MS analysis shows that garnets of Mengya’a are rich in CaO (29.90–37.52 %) and FeO (21.17–33.35 %), but low in Al 2 O 3 (0.05–4.85 %). The calculated end members belong to grandite (grossular–andradite) garnets andradite. The negative Al (IV) versus Fe 3+ , positive Al (IV) versus total Al stoichiometric number, the positive Al (IV) versus Fe 3+ , and the negative Al (IV) versus total REE, all indicate that the substitution of REEs in garnets is controlled by YAG. All Garnets are depleted in large lithophile elements (e.g., Rb = 0.00–4.01 ppm, Sr = 0.03–8.56 ppm). The total REE in Grt1 core is high (∑REE = 233–625 ppm), with HREE enriched pattern (LREE/HREE = 0.33–1.69) and weak negative Eu anomalies (δEu = 0.21–0.47). In contrast, the total REEs in the Grt1 rim and Grt2 are low (ΣREE = 12.4–354 ppm; ΣREE = 21.0–65.3 ppm), with LREE enriched pattern (LREE/HREE = 0.54–34.4; LREE/HREE = 11.4–682) and positive Eu anomalies (δEu = 0.35–27.2; δEu = 1.02–30.7). After data compilation of garnet chemicals, we found that the early fluid responsible for the core of Grt1 was a relatively closed and chloride-depleted fluid system. It was close-to-neutral, with a low water–rock ratio. The core of garnet was formed by fluid diffusion in metasomatic processes. The fluid was changed into a relatively open system with reduced, chloride-rich, and weak-acid fluid. It was fluid infiltration and metasomatism that resulted in the formation of Grt1 rim and Grt2.</description><subject>7th Youth Geoscience Forum of China</subject><subject>Aluminum oxide</subject><subject>Anomalies</subject><subject>Calcium ferrous silicates</subject><subject>Chalcopyrite</subject><subject>Chemical composition</subject><subject>Chlorides</subject><subject>Colour</subject><subject>Depletion</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fluid infiltration</subject><subject>Garnet</subject><subject>Geochemistry</subject><subject>Inductively coupled plasma mass spectrometry</subject><subject>Iron</subject><subject>Lead</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metallogenesis</subject><subject>Mineralization</subject><subject>Open systems</subject><subject>Original Article</subject><subject>Physicochemical processes</subject><subject>Pyrrhotite</subject><subject>Zinc</subject><issn>2096-0956</issn><issn>2365-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kbtuFDEUhkcIJKKQF6CyREUx4PvO0KEVNykoFKloLI99POswY0_sWcGmyjtQ8QY8V54Ez06k7ah8iu__jnX-qnpJ8BuC8eZtJkQyUmNKa4wFozV7Up1RJkW94W37tMy4lTVuhXxeXeR8gzEmjZScN2fV3-0ORm_0gEwcp5j97GNA0aGYjR8GPcd0QHcxgEW9TgHmjFyKI5p3gAadeqhzCQP6CqE_6If7Pxp96x7uf38PKP8oAWThaH2H_DgNZdHiL46YkBv23qJpd8jeRHP6RrB-hXSwCzgeMy-qZ04PGS4e3_Pq-uOH6-3n-vLq05ft-8vaMMznmjaiJRZ41xHtnMTcOAquI6bpgElLDHAJVlDpsBTE0HIEwelmw0Boaxk7r16v2p86OB16dRP3KZSF6q63t7tfCmi5M2aYLOyrlZ1SvN1Dnk8wlQ0jgrKGF4qulEkx5wROTcmPOh0UwWrpT639qeJVx_7UomZrKBc49JBO6v-k_gFzGaNk</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Zhang, Yan</creator><creator>Chen, Cuihua</creator><creator>Yang, Yulong</creator><creator>Kang, Xuhao</creator><creator>Gu, Ying</creator><creator>Lai, Xiang</creator><creator>Chen, Xiaojie</creator><general>Science Press</general><general>Springer Nature B.V</general><general>School of Earth Sciences,Chengdu University of Technology,Chengdu 610059,Sichuan,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JG9</scope><scope>KR7</scope><scope>L.G</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><orcidid>https://orcid.org/0000-0001-7906-8419</orcidid></search><sort><creationdate>20220601</creationdate><title>Chemical composition of oscillatory zoned garnets from the large-scale Mengya’a Pb–Zn skarn deposit: implications for fluid physicochemical conditions and formation</title><author>Zhang, Yan ; Chen, Cuihua ; Yang, Yulong ; Kang, Xuhao ; Gu, Ying ; Lai, Xiang ; Chen, Xiaojie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-28591de4bb1aff604cf2efb1c8be36d1ce46ed526f0651c2448542773e5add33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>7th Youth Geoscience Forum of China</topic><topic>Aluminum oxide</topic><topic>Anomalies</topic><topic>Calcium ferrous silicates</topic><topic>Chalcopyrite</topic><topic>Chemical composition</topic><topic>Chlorides</topic><topic>Colour</topic><topic>Depletion</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fluid infiltration</topic><topic>Garnet</topic><topic>Geochemistry</topic><topic>Inductively coupled plasma mass spectrometry</topic><topic>Iron</topic><topic>Lead</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metallogenesis</topic><topic>Mineralization</topic><topic>Open systems</topic><topic>Original Article</topic><topic>Physicochemical processes</topic><topic>Pyrrhotite</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Chen, Cuihua</creatorcontrib><creatorcontrib>Yang, Yulong</creatorcontrib><creatorcontrib>Kang, Xuhao</creatorcontrib><creatorcontrib>Gu, Ying</creatorcontrib><creatorcontrib>Lai, Xiang</creatorcontrib><creatorcontrib>Chen, Xiaojie</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta geochimica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yan</au><au>Chen, Cuihua</au><au>Yang, Yulong</au><au>Kang, Xuhao</au><au>Gu, Ying</au><au>Lai, Xiang</au><au>Chen, Xiaojie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical composition of oscillatory zoned garnets from the large-scale Mengya’a Pb–Zn skarn deposit: implications for fluid physicochemical conditions and formation</atitle><jtitle>Acta geochimica</jtitle><stitle>Acta Geochim</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>41</volume><issue>3</issue><spage>536</spage><epage>550</epage><pages>536-550</pages><issn>2096-0956</issn><eissn>2365-7499</eissn><abstract>The Mengya’a Lead–zinc deposit is a large skarn deposit in the north of the eastern segment of Gangdese metallogenic belt. The garnet is the main altered mineral in the Mengya’a area. The color of the garnet varies from chartreuse to dark yellow brown and to russet. The brown garnet (Grt1) is related to pyrrhotite and chalcopyrite, and the green garnet (Grt2) is associated with lead–zinc mineralization. LA-ICP-MS is the induced coupled plasma mass spectrometry. This paper has used this technique to investigate Grt1 and Grt2. Grt1 develops core–rim textures with strong oscillation zone occurring in rim, whereas Grt2 lacks core–rim textures and featured by oscillation zone. LA–ICP–MS analysis shows that garnets of Mengya’a are rich in CaO (29.90–37.52 %) and FeO (21.17–33.35 %), but low in Al 2 O 3 (0.05–4.85 %). The calculated end members belong to grandite (grossular–andradite) garnets andradite. The negative Al (IV) versus Fe 3+ , positive Al (IV) versus total Al stoichiometric number, the positive Al (IV) versus Fe 3+ , and the negative Al (IV) versus total REE, all indicate that the substitution of REEs in garnets is controlled by YAG. All Garnets are depleted in large lithophile elements (e.g., Rb = 0.00–4.01 ppm, Sr = 0.03–8.56 ppm). The total REE in Grt1 core is high (∑REE = 233–625 ppm), with HREE enriched pattern (LREE/HREE = 0.33–1.69) and weak negative Eu anomalies (δEu = 0.21–0.47). In contrast, the total REEs in the Grt1 rim and Grt2 are low (ΣREE = 12.4–354 ppm; ΣREE = 21.0–65.3 ppm), with LREE enriched pattern (LREE/HREE = 0.54–34.4; LREE/HREE = 11.4–682) and positive Eu anomalies (δEu = 0.35–27.2; δEu = 1.02–30.7). After data compilation of garnet chemicals, we found that the early fluid responsible for the core of Grt1 was a relatively closed and chloride-depleted fluid system. It was close-to-neutral, with a low water–rock ratio. The core of garnet was formed by fluid diffusion in metasomatic processes. The fluid was changed into a relatively open system with reduced, chloride-rich, and weak-acid fluid. It was fluid infiltration and metasomatism that resulted in the formation of Grt1 rim and Grt2.</abstract><cop>Heidelberg</cop><pub>Science Press</pub><doi>10.1007/s11631-022-00532-3</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7906-8419</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2096-0956
ispartof Acta geochimica, 2022-06, Vol.41 (3), p.536-550
issn 2096-0956
2365-7499
language eng
recordid cdi_wanfang_journals_zgdqhx_e202203013
source SpringerLink; Alma/SFX Local Collection
subjects 7th Youth Geoscience Forum of China
Aluminum oxide
Anomalies
Calcium ferrous silicates
Chalcopyrite
Chemical composition
Chlorides
Colour
Depletion
Earth and Environmental Science
Earth Sciences
Fluid infiltration
Garnet
Geochemistry
Inductively coupled plasma mass spectrometry
Iron
Lead
Mass spectrometry
Mass spectroscopy
Metallogenesis
Mineralization
Open systems
Original Article
Physicochemical processes
Pyrrhotite
Zinc
title Chemical composition of oscillatory zoned garnets from the large-scale Mengya’a Pb–Zn skarn deposit: implications for fluid physicochemical conditions and formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T14%3A37%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20composition%20of%20oscillatory%20zoned%20garnets%20from%20the%20large-scale%20Mengya%E2%80%99a%20Pb%E2%80%93Zn%20skarn%20deposit:%20implications%20for%20fluid%20physicochemical%20conditions%20and%20formation&rft.jtitle=Acta%20geochimica&rft.au=Zhang,%20Yan&rft.date=2022-06-01&rft.volume=41&rft.issue=3&rft.spage=536&rft.epage=550&rft.pages=536-550&rft.issn=2096-0956&rft.eissn=2365-7499&rft_id=info:doi/10.1007/s11631-022-00532-3&rft_dat=%3Cwanfang_jour_proqu%3Ezgdqhx_e202203013%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2683152384&rft_id=info:pmid/&rft_wanfj_id=zgdqhx_e202203013&rfr_iscdi=true