UAV-Assisted Dynamic Avatar Task Migration for Vehicular Metaverse Services: A Multi-Agent Deep Reinforcement Learning Approach
Avatars, as promising digital representations and service assistants of users in Metaverses, can enable drivers and passengers to immerse themselves in 3D virtual services and spaces of UAV-assisted vehicular Metaverses. However, avatar tasks include a multitude of human-to-avatar and avatar-to-avat...
Gespeichert in:
Veröffentlicht in: | IEEE/CAA journal of automatica sinica 2024-02, Vol.11 (2), p.430-445 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 445 |
---|---|
container_issue | 2 |
container_start_page | 430 |
container_title | IEEE/CAA journal of automatica sinica |
container_volume | 11 |
creator | Kang, Jiawen Chen, Junlong Xu, Minrui Xiong, Zehui Jiao, Yutao Han, Luchao Niyato, Dusit Tong, Yongju Xie, Shengli |
description | Avatars, as promising digital representations and service assistants of users in Metaverses, can enable drivers and passengers to immerse themselves in 3D virtual services and spaces of UAV-assisted vehicular Metaverses. However, avatar tasks include a multitude of human-to-avatar and avatar-to-avatar interactive applications, e.g., augmented reality navigation, which consumes intensive computing resources. It is inefficient and impractical for vehicles to process avatar tasks locally. Fortunately, migrating avatar tasks to the nearest roadside units (RSU) or unmanned aerial vehicles (UAV) for execution is a promising solution to decrease computation overhead and reduce task processing latency, while the high mobility of vehicles brings challenges for vehicles to independently perform avatar migration decisions depending on current and future vehicle status. To address these challenges, in this paper, we propose a novel avatar task migration system based on multi-agent deep reinforcement learning (MADRL) to execute immersive vehicular avatar tasks dynamically. Specifically, we first formulate the problem of avatar task migration from vehicles to RSUs/UAVs as a partially observable Markov decision process that can be solved by MADRL algorithms. We then design the multi-agent proximal policy optimization (MAPPO) approach as the MADRL algorithm for the avatar task migration problem. To overcome slow convergence resulting from the curse of dimensionality and non-stationary issues caused by shared parameters in MAPPO, we further propose a transformer-based MAPPO approach via sequential decision-making models for the efficient representation of relationships among agents. Finally, to motivate terrestrial or non-terrestrial edge servers (e.g., RSUs or UAVs) to share computation resources and ensure traceability of the sharing records, we apply smart contracts and blockchain technologies to achieve secure sharing management. Numerical results demonstrate that the proposed approach outperforms the MAPPO approach by around 2% and effectively reduces approximately 20% of the latency of avatar task execution in UAV-assisted vehicular Metaverses. |
doi_str_mv | 10.1109/JAS.2023.123993 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_zdhxb_ywb202402011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zdhxb_ywb202402011</wanfj_id><sourcerecordid>zdhxb_ywb202402011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-d49302c7b66efbe2831d4e37da32a4632612897d3bd6323ddce5147dd3abcab63</originalsourceid><addsrcrecordid>eNpFkUlPAjEUxydGEw1y9trEm8lgNzvW2wRcAzER9Np02jdQhQ62A4oXv7olGD297feWvH-WnRDcIwTL84dy3KOYsh6hTEq2lx1RRmUuacH3_3whDrNujK8YY0IvCiH5Ufb9XL7kZYwutmDRYOP1whlUrnWrA5ro-IZGbhp06xqP6iagF5g5s5qn4ghavYYQAY0hrJ2BeIVKNFrNW5eXU_AtGgAs0RM4nxoNLLapIejgnZ-icrkMjTaz4-yg1vMI3V_byZ5vrif9u3z4eHvfL4e5YZi3ueWSYWqKSgioK6CXjFgOrLCaUc0Fo4LQS1lYVtkUMGsNXBBeWMt0ZXQlWCc728390L7Wfqpem1XwaaP6srPPSm0-qvQ_jikmJMGnOzjd-L6C2P7TVCZMYi62I893lAlNjAFqtQxuocNGEay2qqikitqqonaqsB_GVH-o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920290466</pqid></control><display><type>article</type><title>UAV-Assisted Dynamic Avatar Task Migration for Vehicular Metaverse Services: A Multi-Agent Deep Reinforcement Learning Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Kang, Jiawen ; Chen, Junlong ; Xu, Minrui ; Xiong, Zehui ; Jiao, Yutao ; Han, Luchao ; Niyato, Dusit ; Tong, Yongju ; Xie, Shengli</creator><creatorcontrib>Kang, Jiawen ; Chen, Junlong ; Xu, Minrui ; Xiong, Zehui ; Jiao, Yutao ; Han, Luchao ; Niyato, Dusit ; Tong, Yongju ; Xie, Shengli</creatorcontrib><description>Avatars, as promising digital representations and service assistants of users in Metaverses, can enable drivers and passengers to immerse themselves in 3D virtual services and spaces of UAV-assisted vehicular Metaverses. However, avatar tasks include a multitude of human-to-avatar and avatar-to-avatar interactive applications, e.g., augmented reality navigation, which consumes intensive computing resources. It is inefficient and impractical for vehicles to process avatar tasks locally. Fortunately, migrating avatar tasks to the nearest roadside units (RSU) or unmanned aerial vehicles (UAV) for execution is a promising solution to decrease computation overhead and reduce task processing latency, while the high mobility of vehicles brings challenges for vehicles to independently perform avatar migration decisions depending on current and future vehicle status. To address these challenges, in this paper, we propose a novel avatar task migration system based on multi-agent deep reinforcement learning (MADRL) to execute immersive vehicular avatar tasks dynamically. Specifically, we first formulate the problem of avatar task migration from vehicles to RSUs/UAVs as a partially observable Markov decision process that can be solved by MADRL algorithms. We then design the multi-agent proximal policy optimization (MAPPO) approach as the MADRL algorithm for the avatar task migration problem. To overcome slow convergence resulting from the curse of dimensionality and non-stationary issues caused by shared parameters in MAPPO, we further propose a transformer-based MAPPO approach via sequential decision-making models for the efficient representation of relationships among agents. Finally, to motivate terrestrial or non-terrestrial edge servers (e.g., RSUs or UAVs) to share computation resources and ensure traceability of the sharing records, we apply smart contracts and blockchain technologies to achieve secure sharing management. Numerical results demonstrate that the proposed approach outperforms the MAPPO approach by around 2% and effectively reduces approximately 20% of the latency of avatar task execution in UAV-assisted vehicular Metaverses.</description><identifier>ISSN: 2329-9266</identifier><identifier>EISSN: 2329-9274</identifier><identifier>DOI: 10.1109/JAS.2023.123993</identifier><language>eng</language><publisher>Piscataway: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Algorithms ; Augmented reality ; Avatars ; Cryptography ; Deep learning ; Design optimization ; Edge computing ; Markov processes ; Multiagent systems ; Roadsides ; Unmanned aerial vehicles</subject><ispartof>IEEE/CAA journal of automatica sinica, 2024-02, Vol.11 (2), p.430-445</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-d49302c7b66efbe2831d4e37da32a4632612897d3bd6323ddce5147dd3abcab63</citedby><cites>FETCH-LOGICAL-c304t-d49302c7b66efbe2831d4e37da32a4632612897d3bd6323ddce5147dd3abcab63</cites><orcidid>0000-0003-2041-5214 ; 0000-0002-8218-3490 ; 0000-0002-7442-7416 ; 0000-0001-8726-1059 ; 0000-0002-4440-941X ; 0000-0001-8794-6330 ; 0000-0003-3931-8190 ; 0000-0002-8203-8146 ; 0000-0002-0616-2399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zdhxb-ywb/zdhxb-ywb.jpg</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Kang, Jiawen</creatorcontrib><creatorcontrib>Chen, Junlong</creatorcontrib><creatorcontrib>Xu, Minrui</creatorcontrib><creatorcontrib>Xiong, Zehui</creatorcontrib><creatorcontrib>Jiao, Yutao</creatorcontrib><creatorcontrib>Han, Luchao</creatorcontrib><creatorcontrib>Niyato, Dusit</creatorcontrib><creatorcontrib>Tong, Yongju</creatorcontrib><creatorcontrib>Xie, Shengli</creatorcontrib><title>UAV-Assisted Dynamic Avatar Task Migration for Vehicular Metaverse Services: A Multi-Agent Deep Reinforcement Learning Approach</title><title>IEEE/CAA journal of automatica sinica</title><description>Avatars, as promising digital representations and service assistants of users in Metaverses, can enable drivers and passengers to immerse themselves in 3D virtual services and spaces of UAV-assisted vehicular Metaverses. However, avatar tasks include a multitude of human-to-avatar and avatar-to-avatar interactive applications, e.g., augmented reality navigation, which consumes intensive computing resources. It is inefficient and impractical for vehicles to process avatar tasks locally. Fortunately, migrating avatar tasks to the nearest roadside units (RSU) or unmanned aerial vehicles (UAV) for execution is a promising solution to decrease computation overhead and reduce task processing latency, while the high mobility of vehicles brings challenges for vehicles to independently perform avatar migration decisions depending on current and future vehicle status. To address these challenges, in this paper, we propose a novel avatar task migration system based on multi-agent deep reinforcement learning (MADRL) to execute immersive vehicular avatar tasks dynamically. Specifically, we first formulate the problem of avatar task migration from vehicles to RSUs/UAVs as a partially observable Markov decision process that can be solved by MADRL algorithms. We then design the multi-agent proximal policy optimization (MAPPO) approach as the MADRL algorithm for the avatar task migration problem. To overcome slow convergence resulting from the curse of dimensionality and non-stationary issues caused by shared parameters in MAPPO, we further propose a transformer-based MAPPO approach via sequential decision-making models for the efficient representation of relationships among agents. Finally, to motivate terrestrial or non-terrestrial edge servers (e.g., RSUs or UAVs) to share computation resources and ensure traceability of the sharing records, we apply smart contracts and blockchain technologies to achieve secure sharing management. Numerical results demonstrate that the proposed approach outperforms the MAPPO approach by around 2% and effectively reduces approximately 20% of the latency of avatar task execution in UAV-assisted vehicular Metaverses.</description><subject>Algorithms</subject><subject>Augmented reality</subject><subject>Avatars</subject><subject>Cryptography</subject><subject>Deep learning</subject><subject>Design optimization</subject><subject>Edge computing</subject><subject>Markov processes</subject><subject>Multiagent systems</subject><subject>Roadsides</subject><subject>Unmanned aerial vehicles</subject><issn>2329-9266</issn><issn>2329-9274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkUlPAjEUxydGEw1y9trEm8lgNzvW2wRcAzER9Np02jdQhQ62A4oXv7olGD297feWvH-WnRDcIwTL84dy3KOYsh6hTEq2lx1RRmUuacH3_3whDrNujK8YY0IvCiH5Ufb9XL7kZYwutmDRYOP1whlUrnWrA5ro-IZGbhp06xqP6iagF5g5s5qn4ghavYYQAY0hrJ2BeIVKNFrNW5eXU_AtGgAs0RM4nxoNLLapIejgnZ-icrkMjTaz4-yg1vMI3V_byZ5vrif9u3z4eHvfL4e5YZi3ueWSYWqKSgioK6CXjFgOrLCaUc0Fo4LQS1lYVtkUMGsNXBBeWMt0ZXQlWCc728390L7Wfqpem1XwaaP6srPPSm0-qvQ_jikmJMGnOzjd-L6C2P7TVCZMYi62I893lAlNjAFqtQxuocNGEay2qqikitqqonaqsB_GVH-o</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Kang, Jiawen</creator><creator>Chen, Junlong</creator><creator>Xu, Minrui</creator><creator>Xiong, Zehui</creator><creator>Jiao, Yutao</creator><creator>Han, Luchao</creator><creator>Niyato, Dusit</creator><creator>Tong, Yongju</creator><creator>Xie, Shengli</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>School of Automation,Guangdong University of Technology,Guangzhou 510006,China,111 Center for Intelligent Batch Manufacturing based on IoT Technology,Guangzhou 510006,China%School of Automation,Guangdong University of Technology,Guangzhou 510006,China,Key Laboratory of Intelligent Information Processing and System Integration of IoT,Ministry of Education,Guangzhou 510006,China%School of Computer Science and Engineering,Nanyang Technological University,Singapore,Singapore%Pillar of Information Systems Technology and Design,Singapore University of Technology and Design,Singapore,Singapore%College of Communication Engineering,Army Engineering University of PLA,Nanjing 210007,China%National Natural Science Foundation of China,Beijing 100085,China%School of Automation,Guangdong University of Technology,Guangzhou 510006,China,Key Laboratory of Intelligent Detection and IoT in Manufacturing,Ministry of Education,Guangzhou 510006,China%School of Automation,Guangdong University of Technology,Guangzhou 510006,China,Guangdong Key Laboratory of IoT Information Technology,Guangzhou 510006,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><orcidid>https://orcid.org/0000-0003-2041-5214</orcidid><orcidid>https://orcid.org/0000-0002-8218-3490</orcidid><orcidid>https://orcid.org/0000-0002-7442-7416</orcidid><orcidid>https://orcid.org/0000-0001-8726-1059</orcidid><orcidid>https://orcid.org/0000-0002-4440-941X</orcidid><orcidid>https://orcid.org/0000-0001-8794-6330</orcidid><orcidid>https://orcid.org/0000-0003-3931-8190</orcidid><orcidid>https://orcid.org/0000-0002-8203-8146</orcidid><orcidid>https://orcid.org/0000-0002-0616-2399</orcidid></search><sort><creationdate>20240201</creationdate><title>UAV-Assisted Dynamic Avatar Task Migration for Vehicular Metaverse Services: A Multi-Agent Deep Reinforcement Learning Approach</title><author>Kang, Jiawen ; Chen, Junlong ; Xu, Minrui ; Xiong, Zehui ; Jiao, Yutao ; Han, Luchao ; Niyato, Dusit ; Tong, Yongju ; Xie, Shengli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-d49302c7b66efbe2831d4e37da32a4632612897d3bd6323ddce5147dd3abcab63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Augmented reality</topic><topic>Avatars</topic><topic>Cryptography</topic><topic>Deep learning</topic><topic>Design optimization</topic><topic>Edge computing</topic><topic>Markov processes</topic><topic>Multiagent systems</topic><topic>Roadsides</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Jiawen</creatorcontrib><creatorcontrib>Chen, Junlong</creatorcontrib><creatorcontrib>Xu, Minrui</creatorcontrib><creatorcontrib>Xiong, Zehui</creatorcontrib><creatorcontrib>Jiao, Yutao</creatorcontrib><creatorcontrib>Han, Luchao</creatorcontrib><creatorcontrib>Niyato, Dusit</creatorcontrib><creatorcontrib>Tong, Yongju</creatorcontrib><creatorcontrib>Xie, Shengli</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>IEEE/CAA journal of automatica sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Jiawen</au><au>Chen, Junlong</au><au>Xu, Minrui</au><au>Xiong, Zehui</au><au>Jiao, Yutao</au><au>Han, Luchao</au><au>Niyato, Dusit</au><au>Tong, Yongju</au><au>Xie, Shengli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UAV-Assisted Dynamic Avatar Task Migration for Vehicular Metaverse Services: A Multi-Agent Deep Reinforcement Learning Approach</atitle><jtitle>IEEE/CAA journal of automatica sinica</jtitle><date>2024-02-01</date><risdate>2024</risdate><volume>11</volume><issue>2</issue><spage>430</spage><epage>445</epage><pages>430-445</pages><issn>2329-9266</issn><eissn>2329-9274</eissn><abstract>Avatars, as promising digital representations and service assistants of users in Metaverses, can enable drivers and passengers to immerse themselves in 3D virtual services and spaces of UAV-assisted vehicular Metaverses. However, avatar tasks include a multitude of human-to-avatar and avatar-to-avatar interactive applications, e.g., augmented reality navigation, which consumes intensive computing resources. It is inefficient and impractical for vehicles to process avatar tasks locally. Fortunately, migrating avatar tasks to the nearest roadside units (RSU) or unmanned aerial vehicles (UAV) for execution is a promising solution to decrease computation overhead and reduce task processing latency, while the high mobility of vehicles brings challenges for vehicles to independently perform avatar migration decisions depending on current and future vehicle status. To address these challenges, in this paper, we propose a novel avatar task migration system based on multi-agent deep reinforcement learning (MADRL) to execute immersive vehicular avatar tasks dynamically. Specifically, we first formulate the problem of avatar task migration from vehicles to RSUs/UAVs as a partially observable Markov decision process that can be solved by MADRL algorithms. We then design the multi-agent proximal policy optimization (MAPPO) approach as the MADRL algorithm for the avatar task migration problem. To overcome slow convergence resulting from the curse of dimensionality and non-stationary issues caused by shared parameters in MAPPO, we further propose a transformer-based MAPPO approach via sequential decision-making models for the efficient representation of relationships among agents. Finally, to motivate terrestrial or non-terrestrial edge servers (e.g., RSUs or UAVs) to share computation resources and ensure traceability of the sharing records, we apply smart contracts and blockchain technologies to achieve secure sharing management. Numerical results demonstrate that the proposed approach outperforms the MAPPO approach by around 2% and effectively reduces approximately 20% of the latency of avatar task execution in UAV-assisted vehicular Metaverses.</abstract><cop>Piscataway</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/JAS.2023.123993</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2041-5214</orcidid><orcidid>https://orcid.org/0000-0002-8218-3490</orcidid><orcidid>https://orcid.org/0000-0002-7442-7416</orcidid><orcidid>https://orcid.org/0000-0001-8726-1059</orcidid><orcidid>https://orcid.org/0000-0002-4440-941X</orcidid><orcidid>https://orcid.org/0000-0001-8794-6330</orcidid><orcidid>https://orcid.org/0000-0003-3931-8190</orcidid><orcidid>https://orcid.org/0000-0002-8203-8146</orcidid><orcidid>https://orcid.org/0000-0002-0616-2399</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2329-9266 |
ispartof | IEEE/CAA journal of automatica sinica, 2024-02, Vol.11 (2), p.430-445 |
issn | 2329-9266 2329-9274 |
language | eng |
recordid | cdi_wanfang_journals_zdhxb_ywb202402011 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Augmented reality Avatars Cryptography Deep learning Design optimization Edge computing Markov processes Multiagent systems Roadsides Unmanned aerial vehicles |
title | UAV-Assisted Dynamic Avatar Task Migration for Vehicular Metaverse Services: A Multi-Agent Deep Reinforcement Learning Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A46%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UAV-Assisted%20Dynamic%20Avatar%20Task%20Migration%20for%20Vehicular%20Metaverse%20Services:%20A%20Multi-Agent%20Deep%20Reinforcement%20Learning%20Approach&rft.jtitle=IEEE/CAA%20journal%20of%20automatica%20sinica&rft.au=Kang,%20Jiawen&rft.date=2024-02-01&rft.volume=11&rft.issue=2&rft.spage=430&rft.epage=445&rft.pages=430-445&rft.issn=2329-9266&rft.eissn=2329-9274&rft_id=info:doi/10.1109/JAS.2023.123993&rft_dat=%3Cwanfang_jour_proqu%3Ezdhxb_ywb202402011%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920290466&rft_id=info:pmid/&rft_wanfj_id=zdhxb_ywb202402011&rfr_iscdi=true |