Understanding nonverbal communication cues of human personality traits in human-robot interaction
With the increasing presence of robots in our daily life, there is a strong need and demand for the strategies to acquire a high quality interaction between robots and users by enabling robots to understand usersʼ mood, intention, and other aspects. During human-human interaction, personal...
Gespeichert in:
Veröffentlicht in: | IEEE/CAA journal of automatica sinica 2020-11, Vol.7 (6), p.1465-1477 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1477 |
---|---|
container_issue | 6 |
container_start_page | 1465 |
container_title | IEEE/CAA journal of automatica sinica |
container_volume | 7 |
creator | Shen, Zhihao Elibol, Armagan Chong, Nak Young |
description | With the increasing presence of robots in our daily life, there is a strong need and demand for the strategies to acquire a high quality interaction between robots and users by enabling robots to understand usersʼ mood, intention, and other aspects. During human-human interaction, personality traits have an important influence on human behavior, decision, mood, and many others. Therefore, we propose an efficient computational framework to endow the robot with the capability of understanding the userʼ s personality traits based on the userʼ s nonverbal communication cues represented by three visual features including the head motion, gaze, and body motion energy, and three vocal features including voice pitch, voice energy, and mel-frequency cepstral coefficient ( MFCC ) . We used the Pepper robot in this study as a communication robot to interact with each participant by asking questions, and meanwhile, the robot extracts the nonverbal features from each participantʼ s habitual behavior using its on-board sensors. On the other hand, each participantʼ s personality traits are evaluated with a questionnaire. We then train the ridge regression and linear support vector machine ( SVM ) classifiers using the nonverbal features and personality trait labels from a questionnaire and evaluate the performance of the classifiers. We have verified the validity of the proposed models that showed promising binary classification performance on recognizing each of the Big Five personality traits of the participants based on individual differences in nonverbal communication cues. |
doi_str_mv | 10.1109/JAS.2020.1003201 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_RIE</sourceid><recordid>TN_cdi_wanfang_journals_zdhxb_ywb202006001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9106874</ieee_id><wanfj_id>zdhxb_ywb202006001</wanfj_id><sourcerecordid>zdhxb_ywb202006001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-71f19deacc01fa37c7ca76d90d98db6a3f2e00db3647b1e23043dd9c050521d03</originalsourceid><addsrcrecordid>eNpFkM1LAzEQxRdRsNTeBS8L3oStk2Q3aY6l-IngQXsO2STbbmmTmqTW-tebZUs9zQzze8O8l2XXCMYIAb9_nX6MMeA0ARAM6CwbYIJ5wTErz089pZfZKIQVACBcMcrLQSbnVhsforS6tYvcOvttfC3XuXKbzc62SsbW2VztTMhdky93G2nzbVI4K9dtPOTRyzaGvLX9rvCudjGN0XipOu1VdtHIdTCjYx1m88eHz9lz8fb-9DKbvhWKMIgFQw3i2kilADWSMMWUZFRz0HyiaypJgw2ArgktWY0MJlASrbmCCiqMNJBhdtff3UvbSLsQK7fz6ckgfvXypxaHfd1FBDS5T_BtD2-9-0re4j-Ny4pMEJ1UZaKgp5R3IXjTiK1vN9IfBALRBS9S8KK7Ko7BJ8lNL2mNMSecI6ATVpI_U8N_9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453816854</pqid></control><display><type>article</type><title>Understanding nonverbal communication cues of human personality traits in human-robot interaction</title><source>IEEE Electronic Library (IEL)</source><creator>Shen, Zhihao ; Elibol, Armagan ; Chong, Nak Young</creator><creatorcontrib>Shen, Zhihao ; Elibol, Armagan ; Chong, Nak Young</creatorcontrib><description><![CDATA[With the increasing presence of robots in our daily life, there is a strong need and demand for the strategies to acquire a high quality interaction between robots and users by enabling robots to understand usersʼ mood, intention, and other aspects. During human-human interaction, personality traits have an important influence on human behavior, decision, mood, and many others. Therefore, we propose an efficient computational framework to endow the robot with the capability of understanding the userʼ s personality traits based on the userʼ s nonverbal communication cues represented by three visual features including the head motion, gaze, and body motion energy, and three vocal features including voice pitch, voice energy, and mel-frequency cepstral coefficient ( MFCC ) . We used the Pepper robot in this study as a communication robot to interact with each participant by asking questions, and meanwhile, the robot extracts the nonverbal features from each participantʼ s habitual behavior using its on-board sensors. On the other hand, each participantʼ s personality traits are evaluated with a questionnaire. We then train the ridge regression and linear support vector machine ( SVM ) classifiers using the nonverbal features and personality trait labels from a questionnaire and evaluate the performance of the classifiers. We have verified the validity of the proposed models that showed promising binary classification performance on recognizing each of the Big Five personality traits of the participants based on individual differences in nonverbal communication cues.]]></description><identifier>ISSN: 2329-9266</identifier><identifier>EISSN: 2329-9274</identifier><identifier>DOI: 10.1109/JAS.2020.1003201</identifier><identifier>CODEN: IJASJC</identifier><language>eng</language><publisher>Piscataway: Chinese Association of Automation (CAA)</publisher><subject>Cameras ; Classifiers ; Communication ; Feature extraction ; Head movement ; Human behavior ; Human engineering ; Human-robot interaction ; Performance evaluation ; Personality ; Personality traits ; Questionnaires ; Robot kinematics ; Robot sensing systems ; Robots ; Support vector machines ; Synchronization ; Voice communication</subject><ispartof>IEEE/CAA journal of automatica sinica, 2020-11, Vol.7 (6), p.1465-1477</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-71f19deacc01fa37c7ca76d90d98db6a3f2e00db3647b1e23043dd9c050521d03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zdhxb-ywb/zdhxb-ywb.jpg</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9106874$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9106874$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shen, Zhihao</creatorcontrib><creatorcontrib>Elibol, Armagan</creatorcontrib><creatorcontrib>Chong, Nak Young</creatorcontrib><title>Understanding nonverbal communication cues of human personality traits in human-robot interaction</title><title>IEEE/CAA journal of automatica sinica</title><addtitle>JAS</addtitle><description><![CDATA[With the increasing presence of robots in our daily life, there is a strong need and demand for the strategies to acquire a high quality interaction between robots and users by enabling robots to understand usersʼ mood, intention, and other aspects. During human-human interaction, personality traits have an important influence on human behavior, decision, mood, and many others. Therefore, we propose an efficient computational framework to endow the robot with the capability of understanding the userʼ s personality traits based on the userʼ s nonverbal communication cues represented by three visual features including the head motion, gaze, and body motion energy, and three vocal features including voice pitch, voice energy, and mel-frequency cepstral coefficient ( MFCC ) . We used the Pepper robot in this study as a communication robot to interact with each participant by asking questions, and meanwhile, the robot extracts the nonverbal features from each participantʼ s habitual behavior using its on-board sensors. On the other hand, each participantʼ s personality traits are evaluated with a questionnaire. We then train the ridge regression and linear support vector machine ( SVM ) classifiers using the nonverbal features and personality trait labels from a questionnaire and evaluate the performance of the classifiers. We have verified the validity of the proposed models that showed promising binary classification performance on recognizing each of the Big Five personality traits of the participants based on individual differences in nonverbal communication cues.]]></description><subject>Cameras</subject><subject>Classifiers</subject><subject>Communication</subject><subject>Feature extraction</subject><subject>Head movement</subject><subject>Human behavior</subject><subject>Human engineering</subject><subject>Human-robot interaction</subject><subject>Performance evaluation</subject><subject>Personality</subject><subject>Personality traits</subject><subject>Questionnaires</subject><subject>Robot kinematics</subject><subject>Robot sensing systems</subject><subject>Robots</subject><subject>Support vector machines</subject><subject>Synchronization</subject><subject>Voice communication</subject><issn>2329-9266</issn><issn>2329-9274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkM1LAzEQxRdRsNTeBS8L3oStk2Q3aY6l-IngQXsO2STbbmmTmqTW-tebZUs9zQzze8O8l2XXCMYIAb9_nX6MMeA0ARAM6CwbYIJ5wTErz089pZfZKIQVACBcMcrLQSbnVhsforS6tYvcOvttfC3XuXKbzc62SsbW2VztTMhdky93G2nzbVI4K9dtPOTRyzaGvLX9rvCudjGN0XipOu1VdtHIdTCjYx1m88eHz9lz8fb-9DKbvhWKMIgFQw3i2kilADWSMMWUZFRz0HyiaypJgw2ArgktWY0MJlASrbmCCiqMNJBhdtff3UvbSLsQK7fz6ckgfvXypxaHfd1FBDS5T_BtD2-9-0re4j-Ny4pMEJ1UZaKgp5R3IXjTiK1vN9IfBALRBS9S8KK7Ko7BJ8lNL2mNMSecI6ATVpI_U8N_9g</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Shen, Zhihao</creator><creator>Elibol, Armagan</creator><creator>Chong, Nak Young</creator><general>Chinese Association of Automation (CAA)</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Japan Advanced Institute of Science and Technology, Ishikawa 923-1211, Japan</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20201101</creationdate><title>Understanding nonverbal communication cues of human personality traits in human-robot interaction</title><author>Shen, Zhihao ; Elibol, Armagan ; Chong, Nak Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-71f19deacc01fa37c7ca76d90d98db6a3f2e00db3647b1e23043dd9c050521d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cameras</topic><topic>Classifiers</topic><topic>Communication</topic><topic>Feature extraction</topic><topic>Head movement</topic><topic>Human behavior</topic><topic>Human engineering</topic><topic>Human-robot interaction</topic><topic>Performance evaluation</topic><topic>Personality</topic><topic>Personality traits</topic><topic>Questionnaires</topic><topic>Robot kinematics</topic><topic>Robot sensing systems</topic><topic>Robots</topic><topic>Support vector machines</topic><topic>Synchronization</topic><topic>Voice communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Zhihao</creatorcontrib><creatorcontrib>Elibol, Armagan</creatorcontrib><creatorcontrib>Chong, Nak Young</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>IEEE/CAA journal of automatica sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shen, Zhihao</au><au>Elibol, Armagan</au><au>Chong, Nak Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding nonverbal communication cues of human personality traits in human-robot interaction</atitle><jtitle>IEEE/CAA journal of automatica sinica</jtitle><stitle>JAS</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>7</volume><issue>6</issue><spage>1465</spage><epage>1477</epage><pages>1465-1477</pages><issn>2329-9266</issn><eissn>2329-9274</eissn><coden>IJASJC</coden><abstract><![CDATA[With the increasing presence of robots in our daily life, there is a strong need and demand for the strategies to acquire a high quality interaction between robots and users by enabling robots to understand usersʼ mood, intention, and other aspects. During human-human interaction, personality traits have an important influence on human behavior, decision, mood, and many others. Therefore, we propose an efficient computational framework to endow the robot with the capability of understanding the userʼ s personality traits based on the userʼ s nonverbal communication cues represented by three visual features including the head motion, gaze, and body motion energy, and three vocal features including voice pitch, voice energy, and mel-frequency cepstral coefficient ( MFCC ) . We used the Pepper robot in this study as a communication robot to interact with each participant by asking questions, and meanwhile, the robot extracts the nonverbal features from each participantʼ s habitual behavior using its on-board sensors. On the other hand, each participantʼ s personality traits are evaluated with a questionnaire. We then train the ridge regression and linear support vector machine ( SVM ) classifiers using the nonverbal features and personality trait labels from a questionnaire and evaluate the performance of the classifiers. We have verified the validity of the proposed models that showed promising binary classification performance on recognizing each of the Big Five personality traits of the participants based on individual differences in nonverbal communication cues.]]></abstract><cop>Piscataway</cop><pub>Chinese Association of Automation (CAA)</pub><doi>10.1109/JAS.2020.1003201</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2329-9266 |
ispartof | IEEE/CAA journal of automatica sinica, 2020-11, Vol.7 (6), p.1465-1477 |
issn | 2329-9266 2329-9274 |
language | eng |
recordid | cdi_wanfang_journals_zdhxb_ywb202006001 |
source | IEEE Electronic Library (IEL) |
subjects | Cameras Classifiers Communication Feature extraction Head movement Human behavior Human engineering Human-robot interaction Performance evaluation Personality Personality traits Questionnaires Robot kinematics Robot sensing systems Robots Support vector machines Synchronization Voice communication |
title | Understanding nonverbal communication cues of human personality traits in human-robot interaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A37%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20nonverbal%20communication%20cues%20of%20human%20personality%20traits%20in%20human-robot%20interaction&rft.jtitle=IEEE/CAA%20journal%20of%20automatica%20sinica&rft.au=Shen,%20Zhihao&rft.date=2020-11-01&rft.volume=7&rft.issue=6&rft.spage=1465&rft.epage=1477&rft.pages=1465-1477&rft.issn=2329-9266&rft.eissn=2329-9274&rft.coden=IJASJC&rft_id=info:doi/10.1109/JAS.2020.1003201&rft_dat=%3Cwanfang_jour_RIE%3Ezdhxb_ywb202006001%3C/wanfang_jour_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453816854&rft_id=info:pmid/&rft_ieee_id=9106874&rft_wanfj_id=zdhxb_ywb202006001&rfr_iscdi=true |