Adaptive Sliding Mode Control for Re-entry Attitude of Near Space Hypersonic Vehicle Based on Backstepping Design

Combining sliding mode control method with radial basis function neural network(RBFNN), this paper proposes a robust adaptive control scheme based on backstepping design for re-entry attitude tracking control of near space hypersonic vehicle(NSHV) in the presence of parameter variations and external...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/CAA journal of automatica sinica 2015-01, Vol.2 (1), p.94-101
Hauptverfasser: Zhang, Jingmei, Sun, Changyin, Zhang, Ruimin, Qian, Chengshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 101
container_issue 1
container_start_page 94
container_title IEEE/CAA journal of automatica sinica
container_volume 2
creator Zhang, Jingmei
Sun, Changyin
Zhang, Ruimin
Qian, Chengshan
description Combining sliding mode control method with radial basis function neural network(RBFNN), this paper proposes a robust adaptive control scheme based on backstepping design for re-entry attitude tracking control of near space hypersonic vehicle(NSHV) in the presence of parameter variations and external disturbances. In the attitude angle loop, a robust adaptive virtual control law is designed by using the adaptive method to estimate the unknown upper bound of the compound uncertainties. In the angular velocity loop, an adaptive sliding mode control law is designed to suppress the effect of parameter variations and external disturbances. The main benefit of the sliding mode control is robustness to parameter variations and external disturbances. To further improve the control performance, RBFNNs are introduced to approximate the compound uncertainties in the attitude angle loop and angular velocity loop, respectively. Based on Lyapunov stability theory, the tracking errors are shown to be asymptotically stable. Simulation results show that the proposed control system attains a satisfied control performance and is robust against parameter variations and external disturbances.
doi_str_mv 10.1109/JAS.2015.7032910
format Article
fullrecord <record><control><sourceid>wanfang_jour_RIE</sourceid><recordid>TN_cdi_wanfang_journals_zdhxb_ywb201501012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>90687266504849534849484950</cqvip_id><ieee_id>7032910</ieee_id><wanfj_id>zdhxb_ywb201501012</wanfj_id><sourcerecordid>zdhxb_ywb201501012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2852-deaef876672f89b9e177e10c4e5cf23bd38cf75c677911b6bd1a39cf14b2275b3</originalsourceid><addsrcrecordid>eNpFkUtrGzEUhYfSQEKafSEbQXeFcfUYjUZL182jIUmhbrsVGs2VrdSVxtI4ifPrq4mNs5GOuN89gnOK4iPBE0Kw_HIznU8oJnwiMKOS4HfFCc2ilFRU7w-6ro-Ls5QeMMaEclHL6qRYTzvdD-4R0HzlOucX6C50gGbBDzGskA0R_YQS8muLpsPghk2eBovuQUc077UBdL3tIabgnUF_YOnMCtBXnaBDwWdh_qYB-n50_gbJLfyH4sjqVYKz_X1a_L68-DW7Lm9_XH2fTW9LQxtOyw402EbUtaC2ka0EIgQQbCrgxlLWdqwxVnBTCyEJaeu2I5pJY0nVUip4y06LzzvfJ-2t9gv1EDbR5x_VS7d8btX2qR0jwySHkeFPO7iPYb2BNLzRRHDJqoYLmSm8o0wMKUWwqo_un45bRbAai1C5CDW6qn0ReeV8t-IA4IC_TdnecBn8Yp1DOiAS143IlXFcNZXkbDxfFWb_AROakmk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1759348579</pqid></control><display><type>article</type><title>Adaptive Sliding Mode Control for Re-entry Attitude of Near Space Hypersonic Vehicle Based on Backstepping Design</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Jingmei ; Sun, Changyin ; Zhang, Ruimin ; Qian, Chengshan</creator><creatorcontrib>Zhang, Jingmei ; Sun, Changyin ; Zhang, Ruimin ; Qian, Chengshan</creatorcontrib><description>Combining sliding mode control method with radial basis function neural network(RBFNN), this paper proposes a robust adaptive control scheme based on backstepping design for re-entry attitude tracking control of near space hypersonic vehicle(NSHV) in the presence of parameter variations and external disturbances. In the attitude angle loop, a robust adaptive virtual control law is designed by using the adaptive method to estimate the unknown upper bound of the compound uncertainties. In the angular velocity loop, an adaptive sliding mode control law is designed to suppress the effect of parameter variations and external disturbances. The main benefit of the sliding mode control is robustness to parameter variations and external disturbances. To further improve the control performance, RBFNNs are introduced to approximate the compound uncertainties in the attitude angle loop and angular velocity loop, respectively. Based on Lyapunov stability theory, the tracking errors are shown to be asymptotically stable. Simulation results show that the proposed control system attains a satisfied control performance and is robust against parameter variations and external disturbances.</description><identifier>ISSN: 2329-9266</identifier><identifier>EISSN: 2329-9274</identifier><identifier>DOI: 10.1109/JAS.2015.7032910</identifier><identifier>CODEN: IJASJC</identifier><language>eng</language><publisher>Piscataway: Chinese Association of Automation (CAA)</publisher><subject>Attitude control ; Backstepping ; backstepping design ; Hypersonic vehicle ; Motors ; Neural networks ; Robustness ; Simulation ; Sliding mode control ; sliding mode control radial basis function neural network (RBFNN) ; Uncertainty ; Vehicles</subject><ispartof>IEEE/CAA journal of automatica sinica, 2015-01, Vol.2 (1), p.94-101</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2852-deaef876672f89b9e177e10c4e5cf23bd38cf75c677911b6bd1a39cf14b2275b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/61504X/61504X.jpg</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7032910$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7032910$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Jingmei</creatorcontrib><creatorcontrib>Sun, Changyin</creatorcontrib><creatorcontrib>Zhang, Ruimin</creatorcontrib><creatorcontrib>Qian, Chengshan</creatorcontrib><title>Adaptive Sliding Mode Control for Re-entry Attitude of Near Space Hypersonic Vehicle Based on Backstepping Design</title><title>IEEE/CAA journal of automatica sinica</title><addtitle>JAS</addtitle><addtitle>IEEE/CAA Journal of Automatica Sinica</addtitle><description>Combining sliding mode control method with radial basis function neural network(RBFNN), this paper proposes a robust adaptive control scheme based on backstepping design for re-entry attitude tracking control of near space hypersonic vehicle(NSHV) in the presence of parameter variations and external disturbances. In the attitude angle loop, a robust adaptive virtual control law is designed by using the adaptive method to estimate the unknown upper bound of the compound uncertainties. In the angular velocity loop, an adaptive sliding mode control law is designed to suppress the effect of parameter variations and external disturbances. The main benefit of the sliding mode control is robustness to parameter variations and external disturbances. To further improve the control performance, RBFNNs are introduced to approximate the compound uncertainties in the attitude angle loop and angular velocity loop, respectively. Based on Lyapunov stability theory, the tracking errors are shown to be asymptotically stable. Simulation results show that the proposed control system attains a satisfied control performance and is robust against parameter variations and external disturbances.</description><subject>Attitude control</subject><subject>Backstepping</subject><subject>backstepping design</subject><subject>Hypersonic vehicle</subject><subject>Motors</subject><subject>Neural networks</subject><subject>Robustness</subject><subject>Simulation</subject><subject>Sliding mode control</subject><subject>sliding mode control radial basis function neural network (RBFNN)</subject><subject>Uncertainty</subject><subject>Vehicles</subject><issn>2329-9266</issn><issn>2329-9274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkUtrGzEUhYfSQEKafSEbQXeFcfUYjUZL182jIUmhbrsVGs2VrdSVxtI4ifPrq4mNs5GOuN89gnOK4iPBE0Kw_HIznU8oJnwiMKOS4HfFCc2ilFRU7w-6ro-Ls5QeMMaEclHL6qRYTzvdD-4R0HzlOucX6C50gGbBDzGskA0R_YQS8muLpsPghk2eBovuQUc077UBdL3tIabgnUF_YOnMCtBXnaBDwWdh_qYB-n50_gbJLfyH4sjqVYKz_X1a_L68-DW7Lm9_XH2fTW9LQxtOyw402EbUtaC2ka0EIgQQbCrgxlLWdqwxVnBTCyEJaeu2I5pJY0nVUip4y06LzzvfJ-2t9gv1EDbR5x_VS7d8btX2qR0jwySHkeFPO7iPYb2BNLzRRHDJqoYLmSm8o0wMKUWwqo_un45bRbAai1C5CDW6qn0ReeV8t-IA4IC_TdnecBn8Yp1DOiAS143IlXFcNZXkbDxfFWb_AROakmk</recordid><startdate>20150110</startdate><enddate>20150110</enddate><creator>Zhang, Jingmei</creator><creator>Sun, Changyin</creator><creator>Zhang, Ruimin</creator><creator>Qian, Chengshan</creator><general>Chinese Association of Automation (CAA)</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Flight Control Research Center, Key Laboratory of Measurement and Control of Complex Systems of Engineering, Ministry of Education, School of Automation, Southeast University, Nanjing 210096, China%College of Information and Control, Nanjing University of Information Science&amp;Technology,Nanjing 210044,China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20150110</creationdate><title>Adaptive Sliding Mode Control for Re-entry Attitude of Near Space Hypersonic Vehicle Based on Backstepping Design</title><author>Zhang, Jingmei ; Sun, Changyin ; Zhang, Ruimin ; Qian, Chengshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2852-deaef876672f89b9e177e10c4e5cf23bd38cf75c677911b6bd1a39cf14b2275b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Attitude control</topic><topic>Backstepping</topic><topic>backstepping design</topic><topic>Hypersonic vehicle</topic><topic>Motors</topic><topic>Neural networks</topic><topic>Robustness</topic><topic>Simulation</topic><topic>Sliding mode control</topic><topic>sliding mode control radial basis function neural network (RBFNN)</topic><topic>Uncertainty</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jingmei</creatorcontrib><creatorcontrib>Sun, Changyin</creatorcontrib><creatorcontrib>Zhang, Ruimin</creatorcontrib><creatorcontrib>Qian, Chengshan</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>IEEE/CAA journal of automatica sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Jingmei</au><au>Sun, Changyin</au><au>Zhang, Ruimin</au><au>Qian, Chengshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Sliding Mode Control for Re-entry Attitude of Near Space Hypersonic Vehicle Based on Backstepping Design</atitle><jtitle>IEEE/CAA journal of automatica sinica</jtitle><stitle>JAS</stitle><addtitle>IEEE/CAA Journal of Automatica Sinica</addtitle><date>2015-01-10</date><risdate>2015</risdate><volume>2</volume><issue>1</issue><spage>94</spage><epage>101</epage><pages>94-101</pages><issn>2329-9266</issn><eissn>2329-9274</eissn><coden>IJASJC</coden><abstract>Combining sliding mode control method with radial basis function neural network(RBFNN), this paper proposes a robust adaptive control scheme based on backstepping design for re-entry attitude tracking control of near space hypersonic vehicle(NSHV) in the presence of parameter variations and external disturbances. In the attitude angle loop, a robust adaptive virtual control law is designed by using the adaptive method to estimate the unknown upper bound of the compound uncertainties. In the angular velocity loop, an adaptive sliding mode control law is designed to suppress the effect of parameter variations and external disturbances. The main benefit of the sliding mode control is robustness to parameter variations and external disturbances. To further improve the control performance, RBFNNs are introduced to approximate the compound uncertainties in the attitude angle loop and angular velocity loop, respectively. Based on Lyapunov stability theory, the tracking errors are shown to be asymptotically stable. Simulation results show that the proposed control system attains a satisfied control performance and is robust against parameter variations and external disturbances.</abstract><cop>Piscataway</cop><pub>Chinese Association of Automation (CAA)</pub><doi>10.1109/JAS.2015.7032910</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2329-9266
ispartof IEEE/CAA journal of automatica sinica, 2015-01, Vol.2 (1), p.94-101
issn 2329-9266
2329-9274
language eng
recordid cdi_wanfang_journals_zdhxb_ywb201501012
source IEEE Electronic Library (IEL)
subjects Attitude control
Backstepping
backstepping design
Hypersonic vehicle
Motors
Neural networks
Robustness
Simulation
Sliding mode control
sliding mode control radial basis function neural network (RBFNN)
Uncertainty
Vehicles
title Adaptive Sliding Mode Control for Re-entry Attitude of Near Space Hypersonic Vehicle Based on Backstepping Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A01%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Sliding%20Mode%20Control%20for%20Re-entry%20Attitude%20of%20Near%20Space%20Hypersonic%20Vehicle%20Based%20on%20Backstepping%20Design&rft.jtitle=IEEE/CAA%20journal%20of%20automatica%20sinica&rft.au=Zhang,%20Jingmei&rft.date=2015-01-10&rft.volume=2&rft.issue=1&rft.spage=94&rft.epage=101&rft.pages=94-101&rft.issn=2329-9266&rft.eissn=2329-9274&rft.coden=IJASJC&rft_id=info:doi/10.1109/JAS.2015.7032910&rft_dat=%3Cwanfang_jour_RIE%3Ezdhxb_ywb201501012%3C/wanfang_jour_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1759348579&rft_id=info:pmid/&rft_cqvip_id=90687266504849534849484950&rft_ieee_id=7032910&rft_wanfj_id=zdhxb_ywb201501012&rfr_iscdi=true