Statics, vibration, and buckling of sandwich plates with metamaterial cores characterized by negative thermal expansion and negative Poisson’s ratio
This paper proposes a three-dimensional (3D) Maltese cross metamaterial with negative Poisson’s ratio (NPR) and negative thermal expansion (NTE) adopted as the core layers in sandwich plates, and aims to explore the relations between the mechanical responses of sandwich composites and the NPR or NTE...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and mechanics 2023-09, Vol.44 (9), p.1457-1486 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1486 |
---|---|
container_issue | 9 |
container_start_page | 1457 |
container_title | Applied mathematics and mechanics |
container_volume | 44 |
creator | Zhang, Qiao Sun, Yuxin |
description | This paper proposes a three-dimensional (3D) Maltese cross metamaterial with negative Poisson’s ratio (NPR) and negative thermal expansion (NTE) adopted as the core layers in sandwich plates, and aims to explore the relations between the mechanical responses of sandwich composites and the NPR or NTE of the metamaterial. First, the NPR and NTE of the metamaterial are derived analytically based on energy conservation. The effective elastic modulus and mass density of the 3D metamaterial are obtained and validated by the finite element method (FEM). Subsequently, the general governing equation of the 3D sandwich plate under thermal environments is established based on Hamilton’s principle with the consideration of the von Kármán nonlinearity. The differential quadrature (DQ) FEM (DQFEM) is utilized to obtain the numerical solutions. It is shown that NPR and NTE can enhance the global stiffness of sandwich structures. The geometric parameters of the Maltese cross metamaterial significantly affect the responses of the thermal stress, natural frequency, and critical buckling load. |
doi_str_mv | 10.1007/s10483-023-3024-6 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_yysxhlx_e202309002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>yysxhlx_e202309002</wanfj_id><sourcerecordid>yysxhlx_e202309002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-4cb2c8d2dd732beb849acca7a16d90b94eb0eed764ed52c6e16e57a6533238263</originalsourceid><addsrcrecordid>eNp1kctKxDAUhoMoOI4-gLuAO5lqbm3apQzeQFBQ1yFNz0yrnXRMOjdXPoXg6_kkplZ05SaXP9_5_0MOQoeUnFBC5KmnRKQ8IoxHnDARJVtoQGPJIyZjsY0GhMU8EimTu2jP-ydCiJBCDND7favbyvgRXla5C8fGjrC2Bc4X5rmu7BQ3E-yDsKpMiee1bsHjVdWWeAatnoWrq3SNTeOCbkrttOmkVwgOG2xhGiyXgNsS3CxwsJ5r60PId8bv811Ted_Yz7cPj7-b2Ec7E117OPjZh-jx4vxhfBXd3F5ej89uIsNj2kbC5MykBSsKyVkOeSoybYyWmiZFRvJMQE4ACpkIKGJmEqAJxFInMeeMpyzhQ3Tc-660nWg7VU_NwtmQqDYbvy7rtQIW_pRkJKxDdNTDc9e8LMC3fzRL4yy4JjwNFO0p4xrvHUzU3FUz7TaKEtXNSvWzUsFRdbNSXRusr_GBtVNwf87_F30BTWubZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859653638</pqid></control><display><type>article</type><title>Statics, vibration, and buckling of sandwich plates with metamaterial cores characterized by negative thermal expansion and negative Poisson’s ratio</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Qiao ; Sun, Yuxin</creator><creatorcontrib>Zhang, Qiao ; Sun, Yuxin</creatorcontrib><description>This paper proposes a three-dimensional (3D) Maltese cross metamaterial with negative Poisson’s ratio (NPR) and negative thermal expansion (NTE) adopted as the core layers in sandwich plates, and aims to explore the relations between the mechanical responses of sandwich composites and the NPR or NTE of the metamaterial. First, the NPR and NTE of the metamaterial are derived analytically based on energy conservation. The effective elastic modulus and mass density of the 3D metamaterial are obtained and validated by the finite element method (FEM). Subsequently, the general governing equation of the 3D sandwich plate under thermal environments is established based on Hamilton’s principle with the consideration of the von Kármán nonlinearity. The differential quadrature (DQ) FEM (DQFEM) is utilized to obtain the numerical solutions. It is shown that NPR and NTE can enhance the global stiffness of sandwich structures. The geometric parameters of the Maltese cross metamaterial significantly affect the responses of the thermal stress, natural frequency, and critical buckling load.</description><edition>English ed.</edition><identifier>ISSN: 0253-4827</identifier><identifier>EISSN: 1573-2754</identifier><identifier>DOI: 10.1007/s10483-023-3024-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Buckling ; Classical Mechanics ; Finite element method ; Fluid- and Aerodynamics ; Hamilton's principle ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Metamaterials ; Modulus of elasticity ; Partial Differential Equations ; Plates (structural members) ; Quadratures ; Resonant frequencies ; Sandwich structures ; Thermal environments ; Thermal expansion ; Thermal stress</subject><ispartof>Applied mathematics and mechanics, 2023-09, Vol.44 (9), p.1457-1486</ispartof><rights>Shanghai University 2023</rights><rights>Shanghai University 2023.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-4cb2c8d2dd732beb849acca7a16d90b94eb0eed764ed52c6e16e57a6533238263</citedby><cites>FETCH-LOGICAL-c351t-4cb2c8d2dd732beb849acca7a16d90b94eb0eed764ed52c6e16e57a6533238263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/yysxhlx-e/yysxhlx-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10483-023-3024-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10483-023-3024-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Qiao</creatorcontrib><creatorcontrib>Sun, Yuxin</creatorcontrib><title>Statics, vibration, and buckling of sandwich plates with metamaterial cores characterized by negative thermal expansion and negative Poisson’s ratio</title><title>Applied mathematics and mechanics</title><addtitle>Appl. Math. Mech.-Engl. Ed</addtitle><description>This paper proposes a three-dimensional (3D) Maltese cross metamaterial with negative Poisson’s ratio (NPR) and negative thermal expansion (NTE) adopted as the core layers in sandwich plates, and aims to explore the relations between the mechanical responses of sandwich composites and the NPR or NTE of the metamaterial. First, the NPR and NTE of the metamaterial are derived analytically based on energy conservation. The effective elastic modulus and mass density of the 3D metamaterial are obtained and validated by the finite element method (FEM). Subsequently, the general governing equation of the 3D sandwich plate under thermal environments is established based on Hamilton’s principle with the consideration of the von Kármán nonlinearity. The differential quadrature (DQ) FEM (DQFEM) is utilized to obtain the numerical solutions. It is shown that NPR and NTE can enhance the global stiffness of sandwich structures. The geometric parameters of the Maltese cross metamaterial significantly affect the responses of the thermal stress, natural frequency, and critical buckling load.</description><subject>Applications of Mathematics</subject><subject>Buckling</subject><subject>Classical Mechanics</subject><subject>Finite element method</subject><subject>Fluid- and Aerodynamics</subject><subject>Hamilton's principle</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Metamaterials</subject><subject>Modulus of elasticity</subject><subject>Partial Differential Equations</subject><subject>Plates (structural members)</subject><subject>Quadratures</subject><subject>Resonant frequencies</subject><subject>Sandwich structures</subject><subject>Thermal environments</subject><subject>Thermal expansion</subject><subject>Thermal stress</subject><issn>0253-4827</issn><issn>1573-2754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kctKxDAUhoMoOI4-gLuAO5lqbm3apQzeQFBQ1yFNz0yrnXRMOjdXPoXg6_kkplZ05SaXP9_5_0MOQoeUnFBC5KmnRKQ8IoxHnDARJVtoQGPJIyZjsY0GhMU8EimTu2jP-ydCiJBCDND7favbyvgRXla5C8fGjrC2Bc4X5rmu7BQ3E-yDsKpMiee1bsHjVdWWeAatnoWrq3SNTeOCbkrttOmkVwgOG2xhGiyXgNsS3CxwsJ5r60PId8bv811Ted_Yz7cPj7-b2Ec7E117OPjZh-jx4vxhfBXd3F5ej89uIsNj2kbC5MykBSsKyVkOeSoybYyWmiZFRvJMQE4ACpkIKGJmEqAJxFInMeeMpyzhQ3Tc-660nWg7VU_NwtmQqDYbvy7rtQIW_pRkJKxDdNTDc9e8LMC3fzRL4yy4JjwNFO0p4xrvHUzU3FUz7TaKEtXNSvWzUsFRdbNSXRusr_GBtVNwf87_F30BTWubZA</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Zhang, Qiao</creator><creator>Sun, Yuxin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>National Key Laboratory of Strength and Structural Integrity,School of Aeronautic Science and Engineering,Beihang University,Beijing 100191,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20230901</creationdate><title>Statics, vibration, and buckling of sandwich plates with metamaterial cores characterized by negative thermal expansion and negative Poisson’s ratio</title><author>Zhang, Qiao ; Sun, Yuxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-4cb2c8d2dd732beb849acca7a16d90b94eb0eed764ed52c6e16e57a6533238263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Buckling</topic><topic>Classical Mechanics</topic><topic>Finite element method</topic><topic>Fluid- and Aerodynamics</topic><topic>Hamilton's principle</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Metamaterials</topic><topic>Modulus of elasticity</topic><topic>Partial Differential Equations</topic><topic>Plates (structural members)</topic><topic>Quadratures</topic><topic>Resonant frequencies</topic><topic>Sandwich structures</topic><topic>Thermal environments</topic><topic>Thermal expansion</topic><topic>Thermal stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qiao</creatorcontrib><creatorcontrib>Sun, Yuxin</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Qiao</au><au>Sun, Yuxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statics, vibration, and buckling of sandwich plates with metamaterial cores characterized by negative thermal expansion and negative Poisson’s ratio</atitle><jtitle>Applied mathematics and mechanics</jtitle><stitle>Appl. Math. Mech.-Engl. Ed</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>44</volume><issue>9</issue><spage>1457</spage><epage>1486</epage><pages>1457-1486</pages><issn>0253-4827</issn><eissn>1573-2754</eissn><abstract>This paper proposes a three-dimensional (3D) Maltese cross metamaterial with negative Poisson’s ratio (NPR) and negative thermal expansion (NTE) adopted as the core layers in sandwich plates, and aims to explore the relations between the mechanical responses of sandwich composites and the NPR or NTE of the metamaterial. First, the NPR and NTE of the metamaterial are derived analytically based on energy conservation. The effective elastic modulus and mass density of the 3D metamaterial are obtained and validated by the finite element method (FEM). Subsequently, the general governing equation of the 3D sandwich plate under thermal environments is established based on Hamilton’s principle with the consideration of the von Kármán nonlinearity. The differential quadrature (DQ) FEM (DQFEM) is utilized to obtain the numerical solutions. It is shown that NPR and NTE can enhance the global stiffness of sandwich structures. The geometric parameters of the Maltese cross metamaterial significantly affect the responses of the thermal stress, natural frequency, and critical buckling load.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10483-023-3024-6</doi><tpages>30</tpages><edition>English ed.</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-4827 |
ispartof | Applied mathematics and mechanics, 2023-09, Vol.44 (9), p.1457-1486 |
issn | 0253-4827 1573-2754 |
language | eng |
recordid | cdi_wanfang_journals_yysxhlx_e202309002 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Buckling Classical Mechanics Finite element method Fluid- and Aerodynamics Hamilton's principle Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Metamaterials Modulus of elasticity Partial Differential Equations Plates (structural members) Quadratures Resonant frequencies Sandwich structures Thermal environments Thermal expansion Thermal stress |
title | Statics, vibration, and buckling of sandwich plates with metamaterial cores characterized by negative thermal expansion and negative Poisson’s ratio |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T05%3A19%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statics,%20vibration,%20and%20buckling%20of%20sandwich%20plates%20with%20metamaterial%20cores%20characterized%20by%20negative%20thermal%20expansion%20and%20negative%20Poisson%E2%80%99s%20ratio&rft.jtitle=Applied%20mathematics%20and%20mechanics&rft.au=Zhang,%20Qiao&rft.date=2023-09-01&rft.volume=44&rft.issue=9&rft.spage=1457&rft.epage=1486&rft.pages=1457-1486&rft.issn=0253-4827&rft.eissn=1573-2754&rft_id=info:doi/10.1007/s10483-023-3024-6&rft_dat=%3Cwanfang_jour_proqu%3Eyysxhlx_e202309002%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2859653638&rft_id=info:pmid/&rft_wanfj_id=yysxhlx_e202309002&rfr_iscdi=true |