Nonlinear vibrations of a composite circular plate with a rigid body

The influence of weights is usually ignored in the study of nonlinear vibrations of plates. In this paper, the effect of structure weights on the nonlinear vibration of a composite circular plate with a rigid body is presented. The nonlinear governing equations are derived from the generalized Hamil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and mechanics 2023-06, Vol.44 (6), p.857-876
Hauptverfasser: Meng, Ying, Mao, Xiaoye, Ding, Hu, Chen, Liqun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 876
container_issue 6
container_start_page 857
container_title Applied mathematics and mechanics
container_volume 44
creator Meng, Ying
Mao, Xiaoye
Ding, Hu
Chen, Liqun
description The influence of weights is usually ignored in the study of nonlinear vibrations of plates. In this paper, the effect of structure weights on the nonlinear vibration of a composite circular plate with a rigid body is presented. The nonlinear governing equations are derived from the generalized Hamilton’s principle and the von Kármán plate theory. The equilibrium configurations due to weights are determined and validated by the finite element method (FEM). A nonlinear model for the vibration around the equilibrium configuration is established. Moreover, the natural frequencies and amplitude-frequency responses of harmonically forced vibrations are calculated. The study shows that the structure weights introduce additional linear and quadratic nonlinear terms into the dynamical model. This leads to interesting phenomena. For example, considering weights increases the natural frequency. Furthermore, when the influence of weights is considered, the vibration response of the plate becomes asymmetrical.
doi_str_mv 10.1007/s10483-023-3005-8
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_yysxhlx_e202306001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>yysxhlx_e202306001</wanfj_id><sourcerecordid>yysxhlx_e202306001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-a6ec9c90b43c5c560eb7c48c1cad7f3f903f38ec8260a1008f0b1cd86b5591f13</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKs_wNuCN2F18rXJHqV-QtGLnkM2m7Qp62ZNtrb996ZU6Gl4mYd3mAehawx3GEDcJwxM0hIILSkAL-UJmmAuaEkEZ6doAoTTkkkiztFFSisAYIKxCXp8D33ne6tj8eubqEcf-lQEV-jChO8hJD_awvho1l1Ghk7nuPHjMu-jX_i2aEK7u0RnTnfJXv3PKfp6fvqcvZbzj5e32cO8NJSTsdSVNbWpoWHUcMMrsI0wTBpsdCscdTVQR6U1klSg81fSQYNNK6uG8xo7TKfo9tC70b3T_UKtwjr2-aLa7dJ22W2VJdkAVAB7-OYADzH8rG0ajzSRJNfXlIlMkQOVhuj7hY1HCoPaq1UHtSoXq71aJekfe0Rreg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821009347</pqid></control><display><type>article</type><title>Nonlinear vibrations of a composite circular plate with a rigid body</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Meng, Ying ; Mao, Xiaoye ; Ding, Hu ; Chen, Liqun</creator><creatorcontrib>Meng, Ying ; Mao, Xiaoye ; Ding, Hu ; Chen, Liqun</creatorcontrib><description>The influence of weights is usually ignored in the study of nonlinear vibrations of plates. In this paper, the effect of structure weights on the nonlinear vibration of a composite circular plate with a rigid body is presented. The nonlinear governing equations are derived from the generalized Hamilton’s principle and the von Kármán plate theory. The equilibrium configurations due to weights are determined and validated by the finite element method (FEM). A nonlinear model for the vibration around the equilibrium configuration is established. Moreover, the natural frequencies and amplitude-frequency responses of harmonically forced vibrations are calculated. The study shows that the structure weights introduce additional linear and quadratic nonlinear terms into the dynamical model. This leads to interesting phenomena. For example, considering weights increases the natural frequency. Furthermore, when the influence of weights is considered, the vibration response of the plate becomes asymmetrical.</description><edition>English ed.</edition><identifier>ISSN: 0253-4827</identifier><identifier>EISSN: 1573-2754</identifier><identifier>DOI: 10.1007/s10483-023-3005-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Circular plates ; Classical Mechanics ; Configurations ; Dynamic models ; Finite element method ; Fluid- and Aerodynamics ; Forced vibration ; Hamilton's principle ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Plate theory ; Resonant frequencies ; Rigid structures ; Vibration response</subject><ispartof>Applied mathematics and mechanics, 2023-06, Vol.44 (6), p.857-876</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-a6ec9c90b43c5c560eb7c48c1cad7f3f903f38ec8260a1008f0b1cd86b5591f13</citedby><cites>FETCH-LOGICAL-c352t-a6ec9c90b43c5c560eb7c48c1cad7f3f903f38ec8260a1008f0b1cd86b5591f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/yysxhlx-e/yysxhlx-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10483-023-3005-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10483-023-3005-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Meng, Ying</creatorcontrib><creatorcontrib>Mao, Xiaoye</creatorcontrib><creatorcontrib>Ding, Hu</creatorcontrib><creatorcontrib>Chen, Liqun</creatorcontrib><title>Nonlinear vibrations of a composite circular plate with a rigid body</title><title>Applied mathematics and mechanics</title><addtitle>Appl. Math. Mech.-Engl. Ed</addtitle><description>The influence of weights is usually ignored in the study of nonlinear vibrations of plates. In this paper, the effect of structure weights on the nonlinear vibration of a composite circular plate with a rigid body is presented. The nonlinear governing equations are derived from the generalized Hamilton’s principle and the von Kármán plate theory. The equilibrium configurations due to weights are determined and validated by the finite element method (FEM). A nonlinear model for the vibration around the equilibrium configuration is established. Moreover, the natural frequencies and amplitude-frequency responses of harmonically forced vibrations are calculated. The study shows that the structure weights introduce additional linear and quadratic nonlinear terms into the dynamical model. This leads to interesting phenomena. For example, considering weights increases the natural frequency. Furthermore, when the influence of weights is considered, the vibration response of the plate becomes asymmetrical.</description><subject>Applications of Mathematics</subject><subject>Circular plates</subject><subject>Classical Mechanics</subject><subject>Configurations</subject><subject>Dynamic models</subject><subject>Finite element method</subject><subject>Fluid- and Aerodynamics</subject><subject>Forced vibration</subject><subject>Hamilton's principle</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Plate theory</subject><subject>Resonant frequencies</subject><subject>Rigid structures</subject><subject>Vibration response</subject><issn>0253-4827</issn><issn>1573-2754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNpFkE1LAzEQhoMoWKs_wNuCN2F18rXJHqV-QtGLnkM2m7Qp62ZNtrb996ZU6Gl4mYd3mAehawx3GEDcJwxM0hIILSkAL-UJmmAuaEkEZ6doAoTTkkkiztFFSisAYIKxCXp8D33ne6tj8eubqEcf-lQEV-jChO8hJD_awvho1l1Ghk7nuPHjMu-jX_i2aEK7u0RnTnfJXv3PKfp6fvqcvZbzj5e32cO8NJSTsdSVNbWpoWHUcMMrsI0wTBpsdCscdTVQR6U1klSg81fSQYNNK6uG8xo7TKfo9tC70b3T_UKtwjr2-aLa7dJ22W2VJdkAVAB7-OYADzH8rG0ajzSRJNfXlIlMkQOVhuj7hY1HCoPaq1UHtSoXq71aJekfe0Rreg</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Meng, Ying</creator><creator>Mao, Xiaoye</creator><creator>Ding, Hu</creator><creator>Chen, Liqun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Shanghai Institute of Applied Mathematics and Mechanics,School of Mechanics and Engineering Science,Shanghai University,Shanghai 200444,China</general><scope>C6C</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20230601</creationdate><title>Nonlinear vibrations of a composite circular plate with a rigid body</title><author>Meng, Ying ; Mao, Xiaoye ; Ding, Hu ; Chen, Liqun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-a6ec9c90b43c5c560eb7c48c1cad7f3f903f38ec8260a1008f0b1cd86b5591f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Circular plates</topic><topic>Classical Mechanics</topic><topic>Configurations</topic><topic>Dynamic models</topic><topic>Finite element method</topic><topic>Fluid- and Aerodynamics</topic><topic>Forced vibration</topic><topic>Hamilton's principle</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Plate theory</topic><topic>Resonant frequencies</topic><topic>Rigid structures</topic><topic>Vibration response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Ying</creatorcontrib><creatorcontrib>Mao, Xiaoye</creatorcontrib><creatorcontrib>Ding, Hu</creatorcontrib><creatorcontrib>Chen, Liqun</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Ying</au><au>Mao, Xiaoye</au><au>Ding, Hu</au><au>Chen, Liqun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear vibrations of a composite circular plate with a rigid body</atitle><jtitle>Applied mathematics and mechanics</jtitle><stitle>Appl. Math. Mech.-Engl. Ed</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>44</volume><issue>6</issue><spage>857</spage><epage>876</epage><pages>857-876</pages><issn>0253-4827</issn><eissn>1573-2754</eissn><abstract>The influence of weights is usually ignored in the study of nonlinear vibrations of plates. In this paper, the effect of structure weights on the nonlinear vibration of a composite circular plate with a rigid body is presented. The nonlinear governing equations are derived from the generalized Hamilton’s principle and the von Kármán plate theory. The equilibrium configurations due to weights are determined and validated by the finite element method (FEM). A nonlinear model for the vibration around the equilibrium configuration is established. Moreover, the natural frequencies and amplitude-frequency responses of harmonically forced vibrations are calculated. The study shows that the structure weights introduce additional linear and quadratic nonlinear terms into the dynamical model. This leads to interesting phenomena. For example, considering weights increases the natural frequency. Furthermore, when the influence of weights is considered, the vibration response of the plate becomes asymmetrical.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10483-023-3005-8</doi><tpages>20</tpages><edition>English ed.</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0253-4827
ispartof Applied mathematics and mechanics, 2023-06, Vol.44 (6), p.857-876
issn 0253-4827
1573-2754
language eng
recordid cdi_wanfang_journals_yysxhlx_e202306001
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Circular plates
Classical Mechanics
Configurations
Dynamic models
Finite element method
Fluid- and Aerodynamics
Forced vibration
Hamilton's principle
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Partial Differential Equations
Plate theory
Resonant frequencies
Rigid structures
Vibration response
title Nonlinear vibrations of a composite circular plate with a rigid body
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A23%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20vibrations%20of%20a%20composite%20circular%20plate%20with%20a%20rigid%20body&rft.jtitle=Applied%20mathematics%20and%20mechanics&rft.au=Meng,%20Ying&rft.date=2023-06-01&rft.volume=44&rft.issue=6&rft.spage=857&rft.epage=876&rft.pages=857-876&rft.issn=0253-4827&rft.eissn=1573-2754&rft_id=info:doi/10.1007/s10483-023-3005-8&rft_dat=%3Cwanfang_jour_proqu%3Eyysxhlx_e202306001%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821009347&rft_id=info:pmid/&rft_wanfj_id=yysxhlx_e202306001&rfr_iscdi=true