Nonlinear in-plane thermal buckling of rotationally restrained functionally graded carbon nanotube reinforced composite shallow arches under uniform radial loading

The nonlinear in-plane instability of functionally graded carbon nanotube reinforced composite (FG-CNTRC) shallow circular arches with rotational constraints subject to a uniform radial load in a thermal environment is investigated. Assuming arches with thickness-graded material properties, four dif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and mechanics 2022-12, Vol.43 (12), p.1821-1840
Hauptverfasser: Li, Cheng, Zhu, Chengxiu, Lim, C. W., Li, Shuang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1840
container_issue 12
container_start_page 1821
container_title Applied mathematics and mechanics
container_volume 43
creator Li, Cheng
Zhu, Chengxiu
Lim, C. W.
Li, Shuang
description The nonlinear in-plane instability of functionally graded carbon nanotube reinforced composite (FG-CNTRC) shallow circular arches with rotational constraints subject to a uniform radial load in a thermal environment is investigated. Assuming arches with thickness-graded material properties, four different distribution patterns of carbon nanotubes (CNTs) are considered. The classical arch theory and Donnell’s shallow shell theory assumptions are used to evaluate the arch displacement field, and the analytical solutions of buckling equilibrium equations and buckling loads are obtained by using the principle of virtual work. The critical geometric parameters are introduced to determine the criteria for buckling mode switching. Parametric studies are carried out to demonstrate the effects of temperature variations, material parameters, geometric parameters, and elastic constraints on the stability of the arch. It is found that increasing the volume fraction of CNTs and distributing CNTs away from the neutral axis significantly enhance the bending stiffness of the arch. In addition, the pretension and initial displacement caused by the temperature field have significant effects on the buckling behavior.
doi_str_mv 10.1007/s10483-022-2917-7
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_yysxhlx_e202212003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>yysxhlx_e202212003</wanfj_id><sourcerecordid>yysxhlx_e202212003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-32b780d40c57e985bd70da7975fe27c49255a9504326d9ef2f4a4c247b177a663</originalsourceid><addsrcrecordid>eNp1kcGKFDEQhoMoOK4-gLeANyGapJNJ91EWXYVFL3oO1emkp9eeZKx0szvP44taQ4t78pKCqu__qdTP2Gsl3ykp3fuqpGkbIbUWulNOuCdsp6xrhHbWPGU7qW0jTKvdc_ai1jsppXHG7NjvryXPU46AfMriNEOOfDlEPMLM-zX8pNnIS-JYFlimkmGezxxjXRBINfC05vCvPyIM1AuAfck8Qy7L2kfCp5wKhsuoHE-lTkvk9UCScs8BwyFWvuYhIr0TgUdOPhMtMBeqeXzJniWYa3z1t16xH58-fr_-LG6_3Xy5_nArgm7VIhrdu1YORgbrYtfafnByANc5m6J2wXTaWuisNI3eD11MOhkwQRvXK-dgv2-u2NvN9x5ygjz6u7Ii_az687k-HOYHHzUdWGkpG4LfbPAJy6-VDvJIa7psZ43ZW6LURgUstWJM_oTTEfDslfSX4PwWnCdffwnOO9LoTVOJzWPER-f_i_4A-emfQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2744954465</pqid></control><display><type>article</type><title>Nonlinear in-plane thermal buckling of rotationally restrained functionally graded carbon nanotube reinforced composite shallow arches under uniform radial loading</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Cheng ; Zhu, Chengxiu ; Lim, C. W. ; Li, Shuang</creator><creatorcontrib>Li, Cheng ; Zhu, Chengxiu ; Lim, C. W. ; Li, Shuang</creatorcontrib><description>The nonlinear in-plane instability of functionally graded carbon nanotube reinforced composite (FG-CNTRC) shallow circular arches with rotational constraints subject to a uniform radial load in a thermal environment is investigated. Assuming arches with thickness-graded material properties, four different distribution patterns of carbon nanotubes (CNTs) are considered. The classical arch theory and Donnell’s shallow shell theory assumptions are used to evaluate the arch displacement field, and the analytical solutions of buckling equilibrium equations and buckling loads are obtained by using the principle of virtual work. The critical geometric parameters are introduced to determine the criteria for buckling mode switching. Parametric studies are carried out to demonstrate the effects of temperature variations, material parameters, geometric parameters, and elastic constraints on the stability of the arch. It is found that increasing the volume fraction of CNTs and distributing CNTs away from the neutral axis significantly enhance the bending stiffness of the arch. In addition, the pretension and initial displacement caused by the temperature field have significant effects on the buckling behavior.</description><edition>English ed.</edition><identifier>ISSN: 0253-4827</identifier><identifier>EISSN: 1573-2754</identifier><identifier>DOI: 10.1007/s10483-022-2917-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Arches ; Carbon ; Carbon nanotubes ; Classical Mechanics ; Equilibrium equations ; Exact solutions ; Fluid- and Aerodynamics ; Functionally gradient materials ; Material properties ; Mathematical analysis ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Parameters ; Partial Differential Equations ; Shallow shells ; Shell theory ; Stiffness ; Temperature distribution ; Temperature effects ; Thermal buckling ; Thermal environments</subject><ispartof>Applied mathematics and mechanics, 2022-12, Vol.43 (12), p.1821-1840</ispartof><rights>Shanghai University 2022</rights><rights>Shanghai University 2022.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-32b780d40c57e985bd70da7975fe27c49255a9504326d9ef2f4a4c247b177a663</citedby><cites>FETCH-LOGICAL-c281t-32b780d40c57e985bd70da7975fe27c49255a9504326d9ef2f4a4c247b177a663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/yysxhlx-e/yysxhlx-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10483-022-2917-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10483-022-2917-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Zhu, Chengxiu</creatorcontrib><creatorcontrib>Lim, C. W.</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><title>Nonlinear in-plane thermal buckling of rotationally restrained functionally graded carbon nanotube reinforced composite shallow arches under uniform radial loading</title><title>Applied mathematics and mechanics</title><addtitle>Appl. Math. Mech.-Engl. Ed</addtitle><description>The nonlinear in-plane instability of functionally graded carbon nanotube reinforced composite (FG-CNTRC) shallow circular arches with rotational constraints subject to a uniform radial load in a thermal environment is investigated. Assuming arches with thickness-graded material properties, four different distribution patterns of carbon nanotubes (CNTs) are considered. The classical arch theory and Donnell’s shallow shell theory assumptions are used to evaluate the arch displacement field, and the analytical solutions of buckling equilibrium equations and buckling loads are obtained by using the principle of virtual work. The critical geometric parameters are introduced to determine the criteria for buckling mode switching. Parametric studies are carried out to demonstrate the effects of temperature variations, material parameters, geometric parameters, and elastic constraints on the stability of the arch. It is found that increasing the volume fraction of CNTs and distributing CNTs away from the neutral axis significantly enhance the bending stiffness of the arch. In addition, the pretension and initial displacement caused by the temperature field have significant effects on the buckling behavior.</description><subject>Applications of Mathematics</subject><subject>Arches</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Classical Mechanics</subject><subject>Equilibrium equations</subject><subject>Exact solutions</subject><subject>Fluid- and Aerodynamics</subject><subject>Functionally gradient materials</subject><subject>Material properties</subject><subject>Mathematical analysis</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Parameters</subject><subject>Partial Differential Equations</subject><subject>Shallow shells</subject><subject>Shell theory</subject><subject>Stiffness</subject><subject>Temperature distribution</subject><subject>Temperature effects</subject><subject>Thermal buckling</subject><subject>Thermal environments</subject><issn>0253-4827</issn><issn>1573-2754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kcGKFDEQhoMoOK4-gLeANyGapJNJ91EWXYVFL3oO1emkp9eeZKx0szvP44taQ4t78pKCqu__qdTP2Gsl3ykp3fuqpGkbIbUWulNOuCdsp6xrhHbWPGU7qW0jTKvdc_ai1jsppXHG7NjvryXPU46AfMriNEOOfDlEPMLM-zX8pNnIS-JYFlimkmGezxxjXRBINfC05vCvPyIM1AuAfck8Qy7L2kfCp5wKhsuoHE-lTkvk9UCScs8BwyFWvuYhIr0TgUdOPhMtMBeqeXzJniWYa3z1t16xH58-fr_-LG6_3Xy5_nArgm7VIhrdu1YORgbrYtfafnByANc5m6J2wXTaWuisNI3eD11MOhkwQRvXK-dgv2-u2NvN9x5ygjz6u7Ii_az687k-HOYHHzUdWGkpG4LfbPAJy6-VDvJIa7psZ43ZW6LURgUstWJM_oTTEfDslfSX4PwWnCdffwnOO9LoTVOJzWPER-f_i_4A-emfQQ</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Li, Cheng</creator><creator>Zhu, Chengxiu</creator><creator>Lim, C. W.</creator><creator>Li, Shuang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>School of Rail Transportation,Soochow University,Suzhou 215131,Jiangsu Province,China%School of Rail Transportation,Soochow University,Suzhou 215131,Jiangsu Province,China%Department of Architecture and Civil Engineering,City University of Hong Kong,Tat Chee Ave,Kowloon,Hong Kong Special Administrative Region,China</general><general>School of Automotive Engineering,Changzhou Institute of Technology,Changzhou 213032,Jiangsu Province,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20221201</creationdate><title>Nonlinear in-plane thermal buckling of rotationally restrained functionally graded carbon nanotube reinforced composite shallow arches under uniform radial loading</title><author>Li, Cheng ; Zhu, Chengxiu ; Lim, C. W. ; Li, Shuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-32b780d40c57e985bd70da7975fe27c49255a9504326d9ef2f4a4c247b177a663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Arches</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Classical Mechanics</topic><topic>Equilibrium equations</topic><topic>Exact solutions</topic><topic>Fluid- and Aerodynamics</topic><topic>Functionally gradient materials</topic><topic>Material properties</topic><topic>Mathematical analysis</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Parameters</topic><topic>Partial Differential Equations</topic><topic>Shallow shells</topic><topic>Shell theory</topic><topic>Stiffness</topic><topic>Temperature distribution</topic><topic>Temperature effects</topic><topic>Thermal buckling</topic><topic>Thermal environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Zhu, Chengxiu</creatorcontrib><creatorcontrib>Lim, C. W.</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Cheng</au><au>Zhu, Chengxiu</au><au>Lim, C. W.</au><au>Li, Shuang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear in-plane thermal buckling of rotationally restrained functionally graded carbon nanotube reinforced composite shallow arches under uniform radial loading</atitle><jtitle>Applied mathematics and mechanics</jtitle><stitle>Appl. Math. Mech.-Engl. Ed</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>43</volume><issue>12</issue><spage>1821</spage><epage>1840</epage><pages>1821-1840</pages><issn>0253-4827</issn><eissn>1573-2754</eissn><abstract>The nonlinear in-plane instability of functionally graded carbon nanotube reinforced composite (FG-CNTRC) shallow circular arches with rotational constraints subject to a uniform radial load in a thermal environment is investigated. Assuming arches with thickness-graded material properties, four different distribution patterns of carbon nanotubes (CNTs) are considered. The classical arch theory and Donnell’s shallow shell theory assumptions are used to evaluate the arch displacement field, and the analytical solutions of buckling equilibrium equations and buckling loads are obtained by using the principle of virtual work. The critical geometric parameters are introduced to determine the criteria for buckling mode switching. Parametric studies are carried out to demonstrate the effects of temperature variations, material parameters, geometric parameters, and elastic constraints on the stability of the arch. It is found that increasing the volume fraction of CNTs and distributing CNTs away from the neutral axis significantly enhance the bending stiffness of the arch. In addition, the pretension and initial displacement caused by the temperature field have significant effects on the buckling behavior.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10483-022-2917-7</doi><tpages>20</tpages><edition>English ed.</edition></addata></record>
fulltext fulltext
identifier ISSN: 0253-4827
ispartof Applied mathematics and mechanics, 2022-12, Vol.43 (12), p.1821-1840
issn 0253-4827
1573-2754
language eng
recordid cdi_wanfang_journals_yysxhlx_e202212003
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Arches
Carbon
Carbon nanotubes
Classical Mechanics
Equilibrium equations
Exact solutions
Fluid- and Aerodynamics
Functionally gradient materials
Material properties
Mathematical analysis
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Parameters
Partial Differential Equations
Shallow shells
Shell theory
Stiffness
Temperature distribution
Temperature effects
Thermal buckling
Thermal environments
title Nonlinear in-plane thermal buckling of rotationally restrained functionally graded carbon nanotube reinforced composite shallow arches under uniform radial loading
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A15%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20in-plane%20thermal%20buckling%20of%20rotationally%20restrained%20functionally%20graded%20carbon%20nanotube%20reinforced%20composite%20shallow%20arches%20under%20uniform%20radial%20loading&rft.jtitle=Applied%20mathematics%20and%20mechanics&rft.au=Li,%20Cheng&rft.date=2022-12-01&rft.volume=43&rft.issue=12&rft.spage=1821&rft.epage=1840&rft.pages=1821-1840&rft.issn=0253-4827&rft.eissn=1573-2754&rft_id=info:doi/10.1007/s10483-022-2917-7&rft_dat=%3Cwanfang_jour_proqu%3Eyysxhlx_e202212003%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2744954465&rft_id=info:pmid/&rft_wanfj_id=yysxhlx_e202212003&rfr_iscdi=true