Nonlinear in-plane thermal buckling of rotationally restrained functionally graded carbon nanotube reinforced composite shallow arches under uniform radial loading
The nonlinear in-plane instability of functionally graded carbon nanotube reinforced composite (FG-CNTRC) shallow circular arches with rotational constraints subject to a uniform radial load in a thermal environment is investigated. Assuming arches with thickness-graded material properties, four dif...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and mechanics 2022-12, Vol.43 (12), p.1821-1840 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1840 |
---|---|
container_issue | 12 |
container_start_page | 1821 |
container_title | Applied mathematics and mechanics |
container_volume | 43 |
creator | Li, Cheng Zhu, Chengxiu Lim, C. W. Li, Shuang |
description | The nonlinear in-plane instability of functionally graded carbon nanotube reinforced composite (FG-CNTRC) shallow circular arches with rotational constraints subject to a uniform radial load in a thermal environment is investigated. Assuming arches with thickness-graded material properties, four different distribution patterns of carbon nanotubes (CNTs) are considered. The classical arch theory and Donnell’s shallow shell theory assumptions are used to evaluate the arch displacement field, and the analytical solutions of buckling equilibrium equations and buckling loads are obtained by using the principle of virtual work. The critical geometric parameters are introduced to determine the criteria for buckling mode switching. Parametric studies are carried out to demonstrate the effects of temperature variations, material parameters, geometric parameters, and elastic constraints on the stability of the arch. It is found that increasing the volume fraction of CNTs and distributing CNTs away from the neutral axis significantly enhance the bending stiffness of the arch. In addition, the pretension and initial displacement caused by the temperature field have significant effects on the buckling behavior. |
doi_str_mv | 10.1007/s10483-022-2917-7 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_yysxhlx_e202212003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>yysxhlx_e202212003</wanfj_id><sourcerecordid>yysxhlx_e202212003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-32b780d40c57e985bd70da7975fe27c49255a9504326d9ef2f4a4c247b177a663</originalsourceid><addsrcrecordid>eNp1kcGKFDEQhoMoOK4-gLeANyGapJNJ91EWXYVFL3oO1emkp9eeZKx0szvP44taQ4t78pKCqu__qdTP2Gsl3ykp3fuqpGkbIbUWulNOuCdsp6xrhHbWPGU7qW0jTKvdc_ai1jsppXHG7NjvryXPU46AfMriNEOOfDlEPMLM-zX8pNnIS-JYFlimkmGezxxjXRBINfC05vCvPyIM1AuAfck8Qy7L2kfCp5wKhsuoHE-lTkvk9UCScs8BwyFWvuYhIr0TgUdOPhMtMBeqeXzJniWYa3z1t16xH58-fr_-LG6_3Xy5_nArgm7VIhrdu1YORgbrYtfafnByANc5m6J2wXTaWuisNI3eD11MOhkwQRvXK-dgv2-u2NvN9x5ygjz6u7Ii_az687k-HOYHHzUdWGkpG4LfbPAJy6-VDvJIa7psZ43ZW6LURgUstWJM_oTTEfDslfSX4PwWnCdffwnOO9LoTVOJzWPER-f_i_4A-emfQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2744954465</pqid></control><display><type>article</type><title>Nonlinear in-plane thermal buckling of rotationally restrained functionally graded carbon nanotube reinforced composite shallow arches under uniform radial loading</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Cheng ; Zhu, Chengxiu ; Lim, C. W. ; Li, Shuang</creator><creatorcontrib>Li, Cheng ; Zhu, Chengxiu ; Lim, C. W. ; Li, Shuang</creatorcontrib><description>The nonlinear in-plane instability of functionally graded carbon nanotube reinforced composite (FG-CNTRC) shallow circular arches with rotational constraints subject to a uniform radial load in a thermal environment is investigated. Assuming arches with thickness-graded material properties, four different distribution patterns of carbon nanotubes (CNTs) are considered. The classical arch theory and Donnell’s shallow shell theory assumptions are used to evaluate the arch displacement field, and the analytical solutions of buckling equilibrium equations and buckling loads are obtained by using the principle of virtual work. The critical geometric parameters are introduced to determine the criteria for buckling mode switching. Parametric studies are carried out to demonstrate the effects of temperature variations, material parameters, geometric parameters, and elastic constraints on the stability of the arch. It is found that increasing the volume fraction of CNTs and distributing CNTs away from the neutral axis significantly enhance the bending stiffness of the arch. In addition, the pretension and initial displacement caused by the temperature field have significant effects on the buckling behavior.</description><edition>English ed.</edition><identifier>ISSN: 0253-4827</identifier><identifier>EISSN: 1573-2754</identifier><identifier>DOI: 10.1007/s10483-022-2917-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Arches ; Carbon ; Carbon nanotubes ; Classical Mechanics ; Equilibrium equations ; Exact solutions ; Fluid- and Aerodynamics ; Functionally gradient materials ; Material properties ; Mathematical analysis ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Parameters ; Partial Differential Equations ; Shallow shells ; Shell theory ; Stiffness ; Temperature distribution ; Temperature effects ; Thermal buckling ; Thermal environments</subject><ispartof>Applied mathematics and mechanics, 2022-12, Vol.43 (12), p.1821-1840</ispartof><rights>Shanghai University 2022</rights><rights>Shanghai University 2022.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-32b780d40c57e985bd70da7975fe27c49255a9504326d9ef2f4a4c247b177a663</citedby><cites>FETCH-LOGICAL-c281t-32b780d40c57e985bd70da7975fe27c49255a9504326d9ef2f4a4c247b177a663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/yysxhlx-e/yysxhlx-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10483-022-2917-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10483-022-2917-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Zhu, Chengxiu</creatorcontrib><creatorcontrib>Lim, C. W.</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><title>Nonlinear in-plane thermal buckling of rotationally restrained functionally graded carbon nanotube reinforced composite shallow arches under uniform radial loading</title><title>Applied mathematics and mechanics</title><addtitle>Appl. Math. Mech.-Engl. Ed</addtitle><description>The nonlinear in-plane instability of functionally graded carbon nanotube reinforced composite (FG-CNTRC) shallow circular arches with rotational constraints subject to a uniform radial load in a thermal environment is investigated. Assuming arches with thickness-graded material properties, four different distribution patterns of carbon nanotubes (CNTs) are considered. The classical arch theory and Donnell’s shallow shell theory assumptions are used to evaluate the arch displacement field, and the analytical solutions of buckling equilibrium equations and buckling loads are obtained by using the principle of virtual work. The critical geometric parameters are introduced to determine the criteria for buckling mode switching. Parametric studies are carried out to demonstrate the effects of temperature variations, material parameters, geometric parameters, and elastic constraints on the stability of the arch. It is found that increasing the volume fraction of CNTs and distributing CNTs away from the neutral axis significantly enhance the bending stiffness of the arch. In addition, the pretension and initial displacement caused by the temperature field have significant effects on the buckling behavior.</description><subject>Applications of Mathematics</subject><subject>Arches</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Classical Mechanics</subject><subject>Equilibrium equations</subject><subject>Exact solutions</subject><subject>Fluid- and Aerodynamics</subject><subject>Functionally gradient materials</subject><subject>Material properties</subject><subject>Mathematical analysis</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Parameters</subject><subject>Partial Differential Equations</subject><subject>Shallow shells</subject><subject>Shell theory</subject><subject>Stiffness</subject><subject>Temperature distribution</subject><subject>Temperature effects</subject><subject>Thermal buckling</subject><subject>Thermal environments</subject><issn>0253-4827</issn><issn>1573-2754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kcGKFDEQhoMoOK4-gLeANyGapJNJ91EWXYVFL3oO1emkp9eeZKx0szvP44taQ4t78pKCqu__qdTP2Gsl3ykp3fuqpGkbIbUWulNOuCdsp6xrhHbWPGU7qW0jTKvdc_ai1jsppXHG7NjvryXPU46AfMriNEOOfDlEPMLM-zX8pNnIS-JYFlimkmGezxxjXRBINfC05vCvPyIM1AuAfck8Qy7L2kfCp5wKhsuoHE-lTkvk9UCScs8BwyFWvuYhIr0TgUdOPhMtMBeqeXzJniWYa3z1t16xH58-fr_-LG6_3Xy5_nArgm7VIhrdu1YORgbrYtfafnByANc5m6J2wXTaWuisNI3eD11MOhkwQRvXK-dgv2-u2NvN9x5ygjz6u7Ii_az687k-HOYHHzUdWGkpG4LfbPAJy6-VDvJIa7psZ43ZW6LURgUstWJM_oTTEfDslfSX4PwWnCdffwnOO9LoTVOJzWPER-f_i_4A-emfQQ</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Li, Cheng</creator><creator>Zhu, Chengxiu</creator><creator>Lim, C. W.</creator><creator>Li, Shuang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>School of Rail Transportation,Soochow University,Suzhou 215131,Jiangsu Province,China%School of Rail Transportation,Soochow University,Suzhou 215131,Jiangsu Province,China%Department of Architecture and Civil Engineering,City University of Hong Kong,Tat Chee Ave,Kowloon,Hong Kong Special Administrative Region,China</general><general>School of Automotive Engineering,Changzhou Institute of Technology,Changzhou 213032,Jiangsu Province,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20221201</creationdate><title>Nonlinear in-plane thermal buckling of rotationally restrained functionally graded carbon nanotube reinforced composite shallow arches under uniform radial loading</title><author>Li, Cheng ; Zhu, Chengxiu ; Lim, C. W. ; Li, Shuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-32b780d40c57e985bd70da7975fe27c49255a9504326d9ef2f4a4c247b177a663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Arches</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Classical Mechanics</topic><topic>Equilibrium equations</topic><topic>Exact solutions</topic><topic>Fluid- and Aerodynamics</topic><topic>Functionally gradient materials</topic><topic>Material properties</topic><topic>Mathematical analysis</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Parameters</topic><topic>Partial Differential Equations</topic><topic>Shallow shells</topic><topic>Shell theory</topic><topic>Stiffness</topic><topic>Temperature distribution</topic><topic>Temperature effects</topic><topic>Thermal buckling</topic><topic>Thermal environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Zhu, Chengxiu</creatorcontrib><creatorcontrib>Lim, C. W.</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Cheng</au><au>Zhu, Chengxiu</au><au>Lim, C. W.</au><au>Li, Shuang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear in-plane thermal buckling of rotationally restrained functionally graded carbon nanotube reinforced composite shallow arches under uniform radial loading</atitle><jtitle>Applied mathematics and mechanics</jtitle><stitle>Appl. Math. Mech.-Engl. Ed</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>43</volume><issue>12</issue><spage>1821</spage><epage>1840</epage><pages>1821-1840</pages><issn>0253-4827</issn><eissn>1573-2754</eissn><abstract>The nonlinear in-plane instability of functionally graded carbon nanotube reinforced composite (FG-CNTRC) shallow circular arches with rotational constraints subject to a uniform radial load in a thermal environment is investigated. Assuming arches with thickness-graded material properties, four different distribution patterns of carbon nanotubes (CNTs) are considered. The classical arch theory and Donnell’s shallow shell theory assumptions are used to evaluate the arch displacement field, and the analytical solutions of buckling equilibrium equations and buckling loads are obtained by using the principle of virtual work. The critical geometric parameters are introduced to determine the criteria for buckling mode switching. Parametric studies are carried out to demonstrate the effects of temperature variations, material parameters, geometric parameters, and elastic constraints on the stability of the arch. It is found that increasing the volume fraction of CNTs and distributing CNTs away from the neutral axis significantly enhance the bending stiffness of the arch. In addition, the pretension and initial displacement caused by the temperature field have significant effects on the buckling behavior.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10483-022-2917-7</doi><tpages>20</tpages><edition>English ed.</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-4827 |
ispartof | Applied mathematics and mechanics, 2022-12, Vol.43 (12), p.1821-1840 |
issn | 0253-4827 1573-2754 |
language | eng |
recordid | cdi_wanfang_journals_yysxhlx_e202212003 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Arches Carbon Carbon nanotubes Classical Mechanics Equilibrium equations Exact solutions Fluid- and Aerodynamics Functionally gradient materials Material properties Mathematical analysis Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Parameters Partial Differential Equations Shallow shells Shell theory Stiffness Temperature distribution Temperature effects Thermal buckling Thermal environments |
title | Nonlinear in-plane thermal buckling of rotationally restrained functionally graded carbon nanotube reinforced composite shallow arches under uniform radial loading |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A15%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20in-plane%20thermal%20buckling%20of%20rotationally%20restrained%20functionally%20graded%20carbon%20nanotube%20reinforced%20composite%20shallow%20arches%20under%20uniform%20radial%20loading&rft.jtitle=Applied%20mathematics%20and%20mechanics&rft.au=Li,%20Cheng&rft.date=2022-12-01&rft.volume=43&rft.issue=12&rft.spage=1821&rft.epage=1840&rft.pages=1821-1840&rft.issn=0253-4827&rft.eissn=1573-2754&rft_id=info:doi/10.1007/s10483-022-2917-7&rft_dat=%3Cwanfang_jour_proqu%3Eyysxhlx_e202212003%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2744954465&rft_id=info:pmid/&rft_wanfj_id=yysxhlx_e202212003&rfr_iscdi=true |