Effects of local thickness defects on the buckling of micro-beam
A buckling model of Timoshenko micro-beam with local thickness defects is established based on a modified gradient elasticity. By introducing the local thickness defects function of the micro-beam, the variable coefficient differential equations of the buckling problem are obtained with the variatio...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and mechanics 2022-05, Vol.43 (5), p.729-742 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 742 |
---|---|
container_issue | 5 |
container_start_page | 729 |
container_title | Applied mathematics and mechanics |
container_volume | 43 |
creator | Lai, Andi Zhao, Bing Peng, Xulong Long, Chengyun |
description | A buckling model of Timoshenko micro-beam with local thickness defects is established based on a modified gradient elasticity. By introducing the local thickness defects function of the micro-beam, the variable coefficient differential equations of the buckling problem are obtained with the variational principle. Combining the eigensolution series of the complete micro-beam with the Galerkin method, we obtain the critical load and buckling modes of the micro-beam with defects. The results show that the depth and location of the defect are the main factors affecting the critical load, and the combined effect of boundary conditions and defects can significantly change the buckling mode of the micro-beam. The effect of defect location on buckling is related to the axial gradient of the rotation angle, and defects should be avoided at the maximum axial gradient of the rotation angle. The model and method are also applicable to the static deformation and vibration of the micro-beam. |
doi_str_mv | 10.1007/s10483-022-2855-7 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_yysxhlx_e202205008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>yysxhlx_e202205008</wanfj_id><sourcerecordid>yysxhlx_e202205008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1688-da9cc6d6a1dfba291dd0e832be5eb11592a41bf2c17576ab4b591a31e48d16063</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNuehehMNtlkb0qpf6DgRc8hySbtttusbFpsv70pK3jyNDDze_NmHiG3CPcIIB8SAlclBcYoU0JQeUYmKGRJmRT8nEyAiZJyxeQluUppDQBccj4hj_MQvNulog9F1zvTFbtV6zbRp1Q0_ncUc9MXdu82XRuXJ3TbuqGn1pvtNbkIpkv-5rdOyefz_GP2ShfvL2-zpwV1WClFG1M7VzWVwSZYw2psGvCqZNYLbxFFzQxHG5hDKWRlLLeiRlOi56rBCqpySu7Gvd8mBhOXet3vh5gd9fGYDqvuoD3L34MAUBnGEc5XpjT4oL-GdmuGo0bQp7z0mJfOCn3KS8usYaMmZTYu_fDn8L_oB8hDbSM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effects of local thickness defects on the buckling of micro-beam</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Lai, Andi ; Zhao, Bing ; Peng, Xulong ; Long, Chengyun</creator><creatorcontrib>Lai, Andi ; Zhao, Bing ; Peng, Xulong ; Long, Chengyun</creatorcontrib><description>A buckling model of Timoshenko micro-beam with local thickness defects is established based on a modified gradient elasticity. By introducing the local thickness defects function of the micro-beam, the variable coefficient differential equations of the buckling problem are obtained with the variational principle. Combining the eigensolution series of the complete micro-beam with the Galerkin method, we obtain the critical load and buckling modes of the micro-beam with defects. The results show that the depth and location of the defect are the main factors affecting the critical load, and the combined effect of boundary conditions and defects can significantly change the buckling mode of the micro-beam. The effect of defect location on buckling is related to the axial gradient of the rotation angle, and defects should be avoided at the maximum axial gradient of the rotation angle. The model and method are also applicable to the static deformation and vibration of the micro-beam.</description><identifier>ISSN: 0253-4827</identifier><identifier>EISSN: 1573-2754</identifier><identifier>DOI: 10.1007/s10483-022-2855-7</identifier><language>eng</language><publisher>Shanghai: Shanghai University</publisher><subject>Applications of Mathematics ; Classical Mechanics ; Fluid- and Aerodynamics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations</subject><ispartof>Applied mathematics and mechanics, 2022-05, Vol.43 (5), p.729-742</ispartof><rights>Shanghai University 2022</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1688-da9cc6d6a1dfba291dd0e832be5eb11592a41bf2c17576ab4b591a31e48d16063</citedby><cites>FETCH-LOGICAL-c1688-da9cc6d6a1dfba291dd0e832be5eb11592a41bf2c17576ab4b591a31e48d16063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/yysxhlx-e/yysxhlx-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10483-022-2855-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10483-022-2855-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lai, Andi</creatorcontrib><creatorcontrib>Zhao, Bing</creatorcontrib><creatorcontrib>Peng, Xulong</creatorcontrib><creatorcontrib>Long, Chengyun</creatorcontrib><title>Effects of local thickness defects on the buckling of micro-beam</title><title>Applied mathematics and mechanics</title><addtitle>Appl. Math. Mech.-Engl. Ed</addtitle><description>A buckling model of Timoshenko micro-beam with local thickness defects is established based on a modified gradient elasticity. By introducing the local thickness defects function of the micro-beam, the variable coefficient differential equations of the buckling problem are obtained with the variational principle. Combining the eigensolution series of the complete micro-beam with the Galerkin method, we obtain the critical load and buckling modes of the micro-beam with defects. The results show that the depth and location of the defect are the main factors affecting the critical load, and the combined effect of boundary conditions and defects can significantly change the buckling mode of the micro-beam. The effect of defect location on buckling is related to the axial gradient of the rotation angle, and defects should be avoided at the maximum axial gradient of the rotation angle. The model and method are also applicable to the static deformation and vibration of the micro-beam.</description><subject>Applications of Mathematics</subject><subject>Classical Mechanics</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><issn>0253-4827</issn><issn>1573-2754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwNuehehMNtlkb0qpf6DgRc8hySbtttusbFpsv70pK3jyNDDze_NmHiG3CPcIIB8SAlclBcYoU0JQeUYmKGRJmRT8nEyAiZJyxeQluUppDQBccj4hj_MQvNulog9F1zvTFbtV6zbRp1Q0_ncUc9MXdu82XRuXJ3TbuqGn1pvtNbkIpkv-5rdOyefz_GP2ShfvL2-zpwV1WClFG1M7VzWVwSZYw2psGvCqZNYLbxFFzQxHG5hDKWRlLLeiRlOi56rBCqpySu7Gvd8mBhOXet3vh5gd9fGYDqvuoD3L34MAUBnGEc5XpjT4oL-GdmuGo0bQp7z0mJfOCn3KS8usYaMmZTYu_fDn8L_oB8hDbSM</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Lai, Andi</creator><creator>Zhao, Bing</creator><creator>Peng, Xulong</creator><creator>Long, Chengyun</creator><general>Shanghai University</general><general>Department of Mechanics,School of Civil Engineering,Changsha University of Science and Technology,Changsha 410114,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>202205</creationdate><title>Effects of local thickness defects on the buckling of micro-beam</title><author>Lai, Andi ; Zhao, Bing ; Peng, Xulong ; Long, Chengyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1688-da9cc6d6a1dfba291dd0e832be5eb11592a41bf2c17576ab4b591a31e48d16063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Classical Mechanics</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, Andi</creatorcontrib><creatorcontrib>Zhao, Bing</creatorcontrib><creatorcontrib>Peng, Xulong</creatorcontrib><creatorcontrib>Long, Chengyun</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Andi</au><au>Zhao, Bing</au><au>Peng, Xulong</au><au>Long, Chengyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of local thickness defects on the buckling of micro-beam</atitle><jtitle>Applied mathematics and mechanics</jtitle><stitle>Appl. Math. Mech.-Engl. Ed</stitle><date>2022-05</date><risdate>2022</risdate><volume>43</volume><issue>5</issue><spage>729</spage><epage>742</epage><pages>729-742</pages><issn>0253-4827</issn><eissn>1573-2754</eissn><abstract>A buckling model of Timoshenko micro-beam with local thickness defects is established based on a modified gradient elasticity. By introducing the local thickness defects function of the micro-beam, the variable coefficient differential equations of the buckling problem are obtained with the variational principle. Combining the eigensolution series of the complete micro-beam with the Galerkin method, we obtain the critical load and buckling modes of the micro-beam with defects. The results show that the depth and location of the defect are the main factors affecting the critical load, and the combined effect of boundary conditions and defects can significantly change the buckling mode of the micro-beam. The effect of defect location on buckling is related to the axial gradient of the rotation angle, and defects should be avoided at the maximum axial gradient of the rotation angle. The model and method are also applicable to the static deformation and vibration of the micro-beam.</abstract><cop>Shanghai</cop><pub>Shanghai University</pub><doi>10.1007/s10483-022-2855-7</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-4827 |
ispartof | Applied mathematics and mechanics, 2022-05, Vol.43 (5), p.729-742 |
issn | 0253-4827 1573-2754 |
language | eng |
recordid | cdi_wanfang_journals_yysxhlx_e202205008 |
source | SpringerNature Journals; Alma/SFX Local Collection |
subjects | Applications of Mathematics Classical Mechanics Fluid- and Aerodynamics Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Partial Differential Equations |
title | Effects of local thickness defects on the buckling of micro-beam |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A06%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20local%20thickness%20defects%20on%20the%20buckling%20of%20micro-beam&rft.jtitle=Applied%20mathematics%20and%20mechanics&rft.au=Lai,%20Andi&rft.date=2022-05&rft.volume=43&rft.issue=5&rft.spage=729&rft.epage=742&rft.pages=729-742&rft.issn=0253-4827&rft.eissn=1573-2754&rft_id=info:doi/10.1007/s10483-022-2855-7&rft_dat=%3Cwanfang_jour_cross%3Eyysxhlx_e202205008%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=yysxhlx_e202205008&rfr_iscdi=true |