High-precision stress determination in photoelasticity
Stress separation is usually achieved by solving differential equations of equilibrium after parameter determination from isochromatics and isoclinics. The numerical error resulting from the stress determination is a main concern as it is always a function of parameters in discretization. To improve...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and mechanics 2022-04, Vol.43 (4), p.557-570 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 570 |
---|---|
container_issue | 4 |
container_start_page | 557 |
container_title | Applied mathematics and mechanics |
container_volume | 43 |
creator | Xu, Zikang Han, Yongsheng Shao, Hongliang Su, Zhilong He, Ge Zhang, Dongsheng |
description | Stress separation is usually achieved by solving differential equations of equilibrium after parameter determination from isochromatics and isoclinics. The numerical error resulting from the stress determination is a main concern as it is always a function of parameters in discretization. To improve the accuracy of stress calculation, a novel meshless barycentric rational interpolation collocation method (BRICM) is proposed. The derivatives of the shear stress on the calculation path are determined by using the differential matrix which converts the differential form of the equations of equilibrium into a series of algebraic equations. The advantage of the proposed method is that the auxiliary lines, grids, and error accumulation which are commonly used in traditional shear difference methods (SDMs) are not required. Simulation and experimental results indicate that the proposed meshless method is able to provide high computational accuracy in the full-field stress determination. |
doi_str_mv | 10.1007/s10483-022-2830-9 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_yysxhlx_e202204008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>yysxhlx_e202204008</wanfj_id><sourcerecordid>yysxhlx_e202204008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-79f6cd469d082b128d0ffbd70b658024dd060eb8ab54647dc64dfe0147ae4ceb3</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsP4K3gTYhOsrNJ9ihFrVDwoueQ3WTblHZ3TVJs396UFTx5Ghi-7x_mJ-SWwQMDkI-RAaqCAueUqwJodUYmrJQF5bLEczIBXhYUFZeX5CrGDQCgRJwQsfCrNR2Ca3z0fTeLKbgYZ9YlF3a-M-m09N1sWPepd1sTk298Ol6Ti9Zso7v5nVPy-fL8MV_Q5fvr2_xpSZuiZInKqhWNRVFZULxmXFlo29pKqEWpgKO1IMDVytQlCpS2EWhbBwylcdi4upiS-zH323St6VZ60-9Dly_q4zEe1tuDdjz_DAigMnw3wkPov_Yupj-aCxSywAxlio1UE_oYg2v1EPzOhKNmoE9d6rFLnXP1qUtdZYePTsxst3LhL_l_6QdcAXbO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646734083</pqid></control><display><type>article</type><title>High-precision stress determination in photoelasticity</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Xu, Zikang ; Han, Yongsheng ; Shao, Hongliang ; Su, Zhilong ; He, Ge ; Zhang, Dongsheng</creator><creatorcontrib>Xu, Zikang ; Han, Yongsheng ; Shao, Hongliang ; Su, Zhilong ; He, Ge ; Zhang, Dongsheng</creatorcontrib><description>Stress separation is usually achieved by solving differential equations of equilibrium after parameter determination from isochromatics and isoclinics. The numerical error resulting from the stress determination is a main concern as it is always a function of parameters in discretization. To improve the accuracy of stress calculation, a novel meshless barycentric rational interpolation collocation method (BRICM) is proposed. The derivatives of the shear stress on the calculation path are determined by using the differential matrix which converts the differential form of the equations of equilibrium into a series of algebraic equations. The advantage of the proposed method is that the auxiliary lines, grids, and error accumulation which are commonly used in traditional shear difference methods (SDMs) are not required. Simulation and experimental results indicate that the proposed meshless method is able to provide high computational accuracy in the full-field stress determination.</description><edition>English ed.</edition><identifier>ISSN: 0253-4827</identifier><identifier>EISSN: 1573-2754</identifier><identifier>DOI: 10.1007/s10483-022-2830-9</identifier><language>eng</language><publisher>Shanghai: Shanghai University</publisher><subject>Applications of Mathematics ; Classical Mechanics ; Collocation methods ; Differential equations ; Finite element method ; Fluid- and Aerodynamics ; Interpolation ; Isochromatics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Meshless methods ; Parameters ; Partial Differential Equations ; Photoelasticity ; Shear stress</subject><ispartof>Applied mathematics and mechanics, 2022-04, Vol.43 (4), p.557-570</ispartof><rights>Shanghai University 2022</rights><rights>Shanghai University 2022.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-79f6cd469d082b128d0ffbd70b658024dd060eb8ab54647dc64dfe0147ae4ceb3</citedby><cites>FETCH-LOGICAL-c351t-79f6cd469d082b128d0ffbd70b658024dd060eb8ab54647dc64dfe0147ae4ceb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/yysxhlx-e/yysxhlx-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10483-022-2830-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10483-022-2830-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Xu, Zikang</creatorcontrib><creatorcontrib>Han, Yongsheng</creatorcontrib><creatorcontrib>Shao, Hongliang</creatorcontrib><creatorcontrib>Su, Zhilong</creatorcontrib><creatorcontrib>He, Ge</creatorcontrib><creatorcontrib>Zhang, Dongsheng</creatorcontrib><title>High-precision stress determination in photoelasticity</title><title>Applied mathematics and mechanics</title><addtitle>Appl. Math. Mech.-Engl. Ed</addtitle><description>Stress separation is usually achieved by solving differential equations of equilibrium after parameter determination from isochromatics and isoclinics. The numerical error resulting from the stress determination is a main concern as it is always a function of parameters in discretization. To improve the accuracy of stress calculation, a novel meshless barycentric rational interpolation collocation method (BRICM) is proposed. The derivatives of the shear stress on the calculation path are determined by using the differential matrix which converts the differential form of the equations of equilibrium into a series of algebraic equations. The advantage of the proposed method is that the auxiliary lines, grids, and error accumulation which are commonly used in traditional shear difference methods (SDMs) are not required. Simulation and experimental results indicate that the proposed meshless method is able to provide high computational accuracy in the full-field stress determination.</description><subject>Applications of Mathematics</subject><subject>Classical Mechanics</subject><subject>Collocation methods</subject><subject>Differential equations</subject><subject>Finite element method</subject><subject>Fluid- and Aerodynamics</subject><subject>Interpolation</subject><subject>Isochromatics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Meshless methods</subject><subject>Parameters</subject><subject>Partial Differential Equations</subject><subject>Photoelasticity</subject><subject>Shear stress</subject><issn>0253-4827</issn><issn>1573-2754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhoMoWKsP4K3gTYhOsrNJ9ihFrVDwoueQ3WTblHZ3TVJs396UFTx5Ghi-7x_mJ-SWwQMDkI-RAaqCAueUqwJodUYmrJQF5bLEczIBXhYUFZeX5CrGDQCgRJwQsfCrNR2Ca3z0fTeLKbgYZ9YlF3a-M-m09N1sWPepd1sTk298Ol6Ti9Zso7v5nVPy-fL8MV_Q5fvr2_xpSZuiZInKqhWNRVFZULxmXFlo29pKqEWpgKO1IMDVytQlCpS2EWhbBwylcdi4upiS-zH323St6VZ60-9Dly_q4zEe1tuDdjz_DAigMnw3wkPov_Yupj-aCxSywAxlio1UE_oYg2v1EPzOhKNmoE9d6rFLnXP1qUtdZYePTsxst3LhL_l_6QdcAXbO</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Xu, Zikang</creator><creator>Han, Yongsheng</creator><creator>Shao, Hongliang</creator><creator>Su, Zhilong</creator><creator>He, Ge</creator><creator>Zhang, Dongsheng</creator><general>Shanghai University</general><general>Springer Nature B.V</general><general>Shanghai Institute of Applied Mathematics and Mechanics,Shanghai Key Laboratory of Mechanics in Energy Engineering,School of Mechanics and Engineering Science,Shanghai University,Shanghai 200444,China%Shandong Water Conservancy Vocational College,Rizhao 276826,Shandong Province,China%Shanghai Institute of Space Craft Equipment,Shanghai 200240,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20220401</creationdate><title>High-precision stress determination in photoelasticity</title><author>Xu, Zikang ; Han, Yongsheng ; Shao, Hongliang ; Su, Zhilong ; He, Ge ; Zhang, Dongsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-79f6cd469d082b128d0ffbd70b658024dd060eb8ab54647dc64dfe0147ae4ceb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Classical Mechanics</topic><topic>Collocation methods</topic><topic>Differential equations</topic><topic>Finite element method</topic><topic>Fluid- and Aerodynamics</topic><topic>Interpolation</topic><topic>Isochromatics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Meshless methods</topic><topic>Parameters</topic><topic>Partial Differential Equations</topic><topic>Photoelasticity</topic><topic>Shear stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Zikang</creatorcontrib><creatorcontrib>Han, Yongsheng</creatorcontrib><creatorcontrib>Shao, Hongliang</creatorcontrib><creatorcontrib>Su, Zhilong</creatorcontrib><creatorcontrib>He, Ge</creatorcontrib><creatorcontrib>Zhang, Dongsheng</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Zikang</au><au>Han, Yongsheng</au><au>Shao, Hongliang</au><au>Su, Zhilong</au><au>He, Ge</au><au>Zhang, Dongsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-precision stress determination in photoelasticity</atitle><jtitle>Applied mathematics and mechanics</jtitle><stitle>Appl. Math. Mech.-Engl. Ed</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>43</volume><issue>4</issue><spage>557</spage><epage>570</epage><pages>557-570</pages><issn>0253-4827</issn><eissn>1573-2754</eissn><abstract>Stress separation is usually achieved by solving differential equations of equilibrium after parameter determination from isochromatics and isoclinics. The numerical error resulting from the stress determination is a main concern as it is always a function of parameters in discretization. To improve the accuracy of stress calculation, a novel meshless barycentric rational interpolation collocation method (BRICM) is proposed. The derivatives of the shear stress on the calculation path are determined by using the differential matrix which converts the differential form of the equations of equilibrium into a series of algebraic equations. The advantage of the proposed method is that the auxiliary lines, grids, and error accumulation which are commonly used in traditional shear difference methods (SDMs) are not required. Simulation and experimental results indicate that the proposed meshless method is able to provide high computational accuracy in the full-field stress determination.</abstract><cop>Shanghai</cop><pub>Shanghai University</pub><doi>10.1007/s10483-022-2830-9</doi><tpages>14</tpages><edition>English ed.</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-4827 |
ispartof | Applied mathematics and mechanics, 2022-04, Vol.43 (4), p.557-570 |
issn | 0253-4827 1573-2754 |
language | eng |
recordid | cdi_wanfang_journals_yysxhlx_e202204008 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Applications of Mathematics Classical Mechanics Collocation methods Differential equations Finite element method Fluid- and Aerodynamics Interpolation Isochromatics Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Meshless methods Parameters Partial Differential Equations Photoelasticity Shear stress |
title | High-precision stress determination in photoelasticity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T22%3A39%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-precision%20stress%20determination%20in%20photoelasticity&rft.jtitle=Applied%20mathematics%20and%20mechanics&rft.au=Xu,%20Zikang&rft.date=2022-04-01&rft.volume=43&rft.issue=4&rft.spage=557&rft.epage=570&rft.pages=557-570&rft.issn=0253-4827&rft.eissn=1573-2754&rft_id=info:doi/10.1007/s10483-022-2830-9&rft_dat=%3Cwanfang_jour_proqu%3Eyysxhlx_e202204008%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2646734083&rft_id=info:pmid/&rft_wanfj_id=yysxhlx_e202204008&rfr_iscdi=true |