High-precision stress determination in photoelasticity

Stress separation is usually achieved by solving differential equations of equilibrium after parameter determination from isochromatics and isoclinics. The numerical error resulting from the stress determination is a main concern as it is always a function of parameters in discretization. To improve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and mechanics 2022-04, Vol.43 (4), p.557-570
Hauptverfasser: Xu, Zikang, Han, Yongsheng, Shao, Hongliang, Su, Zhilong, He, Ge, Zhang, Dongsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 570
container_issue 4
container_start_page 557
container_title Applied mathematics and mechanics
container_volume 43
creator Xu, Zikang
Han, Yongsheng
Shao, Hongliang
Su, Zhilong
He, Ge
Zhang, Dongsheng
description Stress separation is usually achieved by solving differential equations of equilibrium after parameter determination from isochromatics and isoclinics. The numerical error resulting from the stress determination is a main concern as it is always a function of parameters in discretization. To improve the accuracy of stress calculation, a novel meshless barycentric rational interpolation collocation method (BRICM) is proposed. The derivatives of the shear stress on the calculation path are determined by using the differential matrix which converts the differential form of the equations of equilibrium into a series of algebraic equations. The advantage of the proposed method is that the auxiliary lines, grids, and error accumulation which are commonly used in traditional shear difference methods (SDMs) are not required. Simulation and experimental results indicate that the proposed meshless method is able to provide high computational accuracy in the full-field stress determination.
doi_str_mv 10.1007/s10483-022-2830-9
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_yysxhlx_e202204008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>yysxhlx_e202204008</wanfj_id><sourcerecordid>yysxhlx_e202204008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-79f6cd469d082b128d0ffbd70b658024dd060eb8ab54647dc64dfe0147ae4ceb3</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsP4K3gTYhOsrNJ9ihFrVDwoueQ3WTblHZ3TVJs396UFTx5Ghi-7x_mJ-SWwQMDkI-RAaqCAueUqwJodUYmrJQF5bLEczIBXhYUFZeX5CrGDQCgRJwQsfCrNR2Ca3z0fTeLKbgYZ9YlF3a-M-m09N1sWPepd1sTk298Ol6Ti9Zso7v5nVPy-fL8MV_Q5fvr2_xpSZuiZInKqhWNRVFZULxmXFlo29pKqEWpgKO1IMDVytQlCpS2EWhbBwylcdi4upiS-zH323St6VZ60-9Dly_q4zEe1tuDdjz_DAigMnw3wkPov_Yupj-aCxSywAxlio1UE_oYg2v1EPzOhKNmoE9d6rFLnXP1qUtdZYePTsxst3LhL_l_6QdcAXbO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646734083</pqid></control><display><type>article</type><title>High-precision stress determination in photoelasticity</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Xu, Zikang ; Han, Yongsheng ; Shao, Hongliang ; Su, Zhilong ; He, Ge ; Zhang, Dongsheng</creator><creatorcontrib>Xu, Zikang ; Han, Yongsheng ; Shao, Hongliang ; Su, Zhilong ; He, Ge ; Zhang, Dongsheng</creatorcontrib><description>Stress separation is usually achieved by solving differential equations of equilibrium after parameter determination from isochromatics and isoclinics. The numerical error resulting from the stress determination is a main concern as it is always a function of parameters in discretization. To improve the accuracy of stress calculation, a novel meshless barycentric rational interpolation collocation method (BRICM) is proposed. The derivatives of the shear stress on the calculation path are determined by using the differential matrix which converts the differential form of the equations of equilibrium into a series of algebraic equations. The advantage of the proposed method is that the auxiliary lines, grids, and error accumulation which are commonly used in traditional shear difference methods (SDMs) are not required. Simulation and experimental results indicate that the proposed meshless method is able to provide high computational accuracy in the full-field stress determination.</description><edition>English ed.</edition><identifier>ISSN: 0253-4827</identifier><identifier>EISSN: 1573-2754</identifier><identifier>DOI: 10.1007/s10483-022-2830-9</identifier><language>eng</language><publisher>Shanghai: Shanghai University</publisher><subject>Applications of Mathematics ; Classical Mechanics ; Collocation methods ; Differential equations ; Finite element method ; Fluid- and Aerodynamics ; Interpolation ; Isochromatics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Meshless methods ; Parameters ; Partial Differential Equations ; Photoelasticity ; Shear stress</subject><ispartof>Applied mathematics and mechanics, 2022-04, Vol.43 (4), p.557-570</ispartof><rights>Shanghai University 2022</rights><rights>Shanghai University 2022.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-79f6cd469d082b128d0ffbd70b658024dd060eb8ab54647dc64dfe0147ae4ceb3</citedby><cites>FETCH-LOGICAL-c351t-79f6cd469d082b128d0ffbd70b658024dd060eb8ab54647dc64dfe0147ae4ceb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/yysxhlx-e/yysxhlx-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10483-022-2830-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10483-022-2830-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Xu, Zikang</creatorcontrib><creatorcontrib>Han, Yongsheng</creatorcontrib><creatorcontrib>Shao, Hongliang</creatorcontrib><creatorcontrib>Su, Zhilong</creatorcontrib><creatorcontrib>He, Ge</creatorcontrib><creatorcontrib>Zhang, Dongsheng</creatorcontrib><title>High-precision stress determination in photoelasticity</title><title>Applied mathematics and mechanics</title><addtitle>Appl. Math. Mech.-Engl. Ed</addtitle><description>Stress separation is usually achieved by solving differential equations of equilibrium after parameter determination from isochromatics and isoclinics. The numerical error resulting from the stress determination is a main concern as it is always a function of parameters in discretization. To improve the accuracy of stress calculation, a novel meshless barycentric rational interpolation collocation method (BRICM) is proposed. The derivatives of the shear stress on the calculation path are determined by using the differential matrix which converts the differential form of the equations of equilibrium into a series of algebraic equations. The advantage of the proposed method is that the auxiliary lines, grids, and error accumulation which are commonly used in traditional shear difference methods (SDMs) are not required. Simulation and experimental results indicate that the proposed meshless method is able to provide high computational accuracy in the full-field stress determination.</description><subject>Applications of Mathematics</subject><subject>Classical Mechanics</subject><subject>Collocation methods</subject><subject>Differential equations</subject><subject>Finite element method</subject><subject>Fluid- and Aerodynamics</subject><subject>Interpolation</subject><subject>Isochromatics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Meshless methods</subject><subject>Parameters</subject><subject>Partial Differential Equations</subject><subject>Photoelasticity</subject><subject>Shear stress</subject><issn>0253-4827</issn><issn>1573-2754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhoMoWKsP4K3gTYhOsrNJ9ihFrVDwoueQ3WTblHZ3TVJs396UFTx5Ghi-7x_mJ-SWwQMDkI-RAaqCAueUqwJodUYmrJQF5bLEczIBXhYUFZeX5CrGDQCgRJwQsfCrNR2Ca3z0fTeLKbgYZ9YlF3a-M-m09N1sWPepd1sTk298Ol6Ti9Zso7v5nVPy-fL8MV_Q5fvr2_xpSZuiZInKqhWNRVFZULxmXFlo29pKqEWpgKO1IMDVytQlCpS2EWhbBwylcdi4upiS-zH323St6VZ60-9Dly_q4zEe1tuDdjz_DAigMnw3wkPov_Yupj-aCxSywAxlio1UE_oYg2v1EPzOhKNmoE9d6rFLnXP1qUtdZYePTsxst3LhL_l_6QdcAXbO</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Xu, Zikang</creator><creator>Han, Yongsheng</creator><creator>Shao, Hongliang</creator><creator>Su, Zhilong</creator><creator>He, Ge</creator><creator>Zhang, Dongsheng</creator><general>Shanghai University</general><general>Springer Nature B.V</general><general>Shanghai Institute of Applied Mathematics and Mechanics,Shanghai Key Laboratory of Mechanics in Energy Engineering,School of Mechanics and Engineering Science,Shanghai University,Shanghai 200444,China%Shandong Water Conservancy Vocational College,Rizhao 276826,Shandong Province,China%Shanghai Institute of Space Craft Equipment,Shanghai 200240,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20220401</creationdate><title>High-precision stress determination in photoelasticity</title><author>Xu, Zikang ; Han, Yongsheng ; Shao, Hongliang ; Su, Zhilong ; He, Ge ; Zhang, Dongsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-79f6cd469d082b128d0ffbd70b658024dd060eb8ab54647dc64dfe0147ae4ceb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Classical Mechanics</topic><topic>Collocation methods</topic><topic>Differential equations</topic><topic>Finite element method</topic><topic>Fluid- and Aerodynamics</topic><topic>Interpolation</topic><topic>Isochromatics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Meshless methods</topic><topic>Parameters</topic><topic>Partial Differential Equations</topic><topic>Photoelasticity</topic><topic>Shear stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Zikang</creatorcontrib><creatorcontrib>Han, Yongsheng</creatorcontrib><creatorcontrib>Shao, Hongliang</creatorcontrib><creatorcontrib>Su, Zhilong</creatorcontrib><creatorcontrib>He, Ge</creatorcontrib><creatorcontrib>Zhang, Dongsheng</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Zikang</au><au>Han, Yongsheng</au><au>Shao, Hongliang</au><au>Su, Zhilong</au><au>He, Ge</au><au>Zhang, Dongsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-precision stress determination in photoelasticity</atitle><jtitle>Applied mathematics and mechanics</jtitle><stitle>Appl. Math. Mech.-Engl. Ed</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>43</volume><issue>4</issue><spage>557</spage><epage>570</epage><pages>557-570</pages><issn>0253-4827</issn><eissn>1573-2754</eissn><abstract>Stress separation is usually achieved by solving differential equations of equilibrium after parameter determination from isochromatics and isoclinics. The numerical error resulting from the stress determination is a main concern as it is always a function of parameters in discretization. To improve the accuracy of stress calculation, a novel meshless barycentric rational interpolation collocation method (BRICM) is proposed. The derivatives of the shear stress on the calculation path are determined by using the differential matrix which converts the differential form of the equations of equilibrium into a series of algebraic equations. The advantage of the proposed method is that the auxiliary lines, grids, and error accumulation which are commonly used in traditional shear difference methods (SDMs) are not required. Simulation and experimental results indicate that the proposed meshless method is able to provide high computational accuracy in the full-field stress determination.</abstract><cop>Shanghai</cop><pub>Shanghai University</pub><doi>10.1007/s10483-022-2830-9</doi><tpages>14</tpages><edition>English ed.</edition></addata></record>
fulltext fulltext
identifier ISSN: 0253-4827
ispartof Applied mathematics and mechanics, 2022-04, Vol.43 (4), p.557-570
issn 0253-4827
1573-2754
language eng
recordid cdi_wanfang_journals_yysxhlx_e202204008
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Applications of Mathematics
Classical Mechanics
Collocation methods
Differential equations
Finite element method
Fluid- and Aerodynamics
Interpolation
Isochromatics
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Meshless methods
Parameters
Partial Differential Equations
Photoelasticity
Shear stress
title High-precision stress determination in photoelasticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T22%3A39%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-precision%20stress%20determination%20in%20photoelasticity&rft.jtitle=Applied%20mathematics%20and%20mechanics&rft.au=Xu,%20Zikang&rft.date=2022-04-01&rft.volume=43&rft.issue=4&rft.spage=557&rft.epage=570&rft.pages=557-570&rft.issn=0253-4827&rft.eissn=1573-2754&rft_id=info:doi/10.1007/s10483-022-2830-9&rft_dat=%3Cwanfang_jour_proqu%3Eyysxhlx_e202204008%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2646734083&rft_id=info:pmid/&rft_wanfj_id=yysxhlx_e202204008&rfr_iscdi=true