An adaptive artificial viscosity for the displacement shallow water wave equation
The numerical oscillation problem is a difficulty for the simulation of rapidly varying shallow water surfaces which are often caused by the unsmooth uneven bottom, the moving wet-dry interface, and so on. In this paper, an adaptive artificial viscosity (AAV) is proposed and combined with the displa...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and mechanics 2022-02, Vol.43 (2), p.247-262 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 262 |
---|---|
container_issue | 2 |
container_start_page | 247 |
container_title | Applied mathematics and mechanics |
container_volume | 43 |
creator | Ye, Keqi Zhao, Yuelin Wu, Feng Zhong, Wanxie |
description | The numerical oscillation problem is a difficulty for the simulation of rapidly varying shallow water surfaces which are often caused by the unsmooth uneven bottom, the moving wet-dry interface, and so on. In this paper, an adaptive artificial viscosity (AAV) is proposed and combined with the displacement shallow water wave equation (DSWWE) to establish an effective model which can accurately predict the evolution of multiple shocks effected by the uneven bottom and the wet-dry interface. The effectiveness of the proposed AAV is first illustrated by using the steady-state solution and the small perturbation analysis. Then, the action mechanism of the AAV on the shallow water waves with the uneven bottom is explained by using the Fourier theory. It is shown that the AVV can suppress the wave with the large wave number, and can also suppress the numerical oscillations for the rapidly varying bottom. Finally, four numerical examples are given, and the numerical results show that the DSWWE combined with the AAV can effectively simulate the shock waves, accurately capture the movements of wet-dry interfaces, and precisely preserve the mass. |
doi_str_mv | 10.1007/s10483-022-2815-7 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_yysxhlx_e202202007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>yysxhlx_e202202007</wanfj_id><sourcerecordid>yysxhlx_e202202007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-c1205b1dfcd01b6d53bb5a911c334ed4a443cf99b7099c774202c4ce915e2413</originalsourceid><addsrcrecordid>eNp1kMtqwzAQRUVpoWnaD-jO0F1BrUaPyF6G0BcESiF7IctyouDYiaQ8_PdVcCGrwjCzOfcOHIQegbwAIfI1AOE5w4RSTHMQWF6hEQjJMJWCX6MRoYJhnlN5i-5CWBNCuOR8hH6mbaYrvY3uYDPto6udcbrJDi6YLrjYZ3Xns7iyWeXCttHGbmwbs7DSTdMds6OO1qedwna319F17T26qXUT7MPfHaPF-9ti9onn3x9fs-kcGyYgYgOUiBKq2lQEykklWFkKXQAYxrituOacmbooSkmKwkjJKaGGG1uAsJQDG6Pnofao21q3S7Xu9r5ND1Xfh9OqOSmbEmmSnQQ_DfDWd7u9DfFC0wnlFHKa_IwRDJTxXQje1mrr3Ub7XgFRZ8tqsKxSrzpbVudmOmRCYtul9Zfm_0O_bCl_gQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624218225</pqid></control><display><type>article</type><title>An adaptive artificial viscosity for the displacement shallow water wave equation</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Ye, Keqi ; Zhao, Yuelin ; Wu, Feng ; Zhong, Wanxie</creator><creatorcontrib>Ye, Keqi ; Zhao, Yuelin ; Wu, Feng ; Zhong, Wanxie</creatorcontrib><description>The numerical oscillation problem is a difficulty for the simulation of rapidly varying shallow water surfaces which are often caused by the unsmooth uneven bottom, the moving wet-dry interface, and so on. In this paper, an adaptive artificial viscosity (AAV) is proposed and combined with the displacement shallow water wave equation (DSWWE) to establish an effective model which can accurately predict the evolution of multiple shocks effected by the uneven bottom and the wet-dry interface. The effectiveness of the proposed AAV is first illustrated by using the steady-state solution and the small perturbation analysis. Then, the action mechanism of the AAV on the shallow water waves with the uneven bottom is explained by using the Fourier theory. It is shown that the AVV can suppress the wave with the large wave number, and can also suppress the numerical oscillations for the rapidly varying bottom. Finally, four numerical examples are given, and the numerical results show that the DSWWE combined with the AAV can effectively simulate the shock waves, accurately capture the movements of wet-dry interfaces, and precisely preserve the mass.</description><edition>English ed.</edition><identifier>ISSN: 0253-4827</identifier><identifier>EISSN: 1573-2754</identifier><identifier>DOI: 10.1007/s10483-022-2815-7</identifier><language>eng</language><publisher>Shanghai: Shanghai University</publisher><subject>Applications of Mathematics ; Classical Mechanics ; Fluid- and Aerodynamics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Perturbation methods ; Shallow water ; Shock waves ; Viscosity ; Water waves ; Wave equations</subject><ispartof>Applied mathematics and mechanics, 2022-02, Vol.43 (2), p.247-262</ispartof><rights>Shanghai University 2022</rights><rights>Shanghai University 2022.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-c1205b1dfcd01b6d53bb5a911c334ed4a443cf99b7099c774202c4ce915e2413</citedby><cites>FETCH-LOGICAL-c351t-c1205b1dfcd01b6d53bb5a911c334ed4a443cf99b7099c774202c4ce915e2413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/yysxhlx-e/yysxhlx-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10483-022-2815-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10483-022-2815-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ye, Keqi</creatorcontrib><creatorcontrib>Zhao, Yuelin</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Zhong, Wanxie</creatorcontrib><title>An adaptive artificial viscosity for the displacement shallow water wave equation</title><title>Applied mathematics and mechanics</title><addtitle>Appl. Math. Mech.-Engl. Ed</addtitle><description>The numerical oscillation problem is a difficulty for the simulation of rapidly varying shallow water surfaces which are often caused by the unsmooth uneven bottom, the moving wet-dry interface, and so on. In this paper, an adaptive artificial viscosity (AAV) is proposed and combined with the displacement shallow water wave equation (DSWWE) to establish an effective model which can accurately predict the evolution of multiple shocks effected by the uneven bottom and the wet-dry interface. The effectiveness of the proposed AAV is first illustrated by using the steady-state solution and the small perturbation analysis. Then, the action mechanism of the AAV on the shallow water waves with the uneven bottom is explained by using the Fourier theory. It is shown that the AVV can suppress the wave with the large wave number, and can also suppress the numerical oscillations for the rapidly varying bottom. Finally, four numerical examples are given, and the numerical results show that the DSWWE combined with the AAV can effectively simulate the shock waves, accurately capture the movements of wet-dry interfaces, and precisely preserve the mass.</description><subject>Applications of Mathematics</subject><subject>Classical Mechanics</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Perturbation methods</subject><subject>Shallow water</subject><subject>Shock waves</subject><subject>Viscosity</subject><subject>Water waves</subject><subject>Wave equations</subject><issn>0253-4827</issn><issn>1573-2754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMtqwzAQRUVpoWnaD-jO0F1BrUaPyF6G0BcESiF7IctyouDYiaQ8_PdVcCGrwjCzOfcOHIQegbwAIfI1AOE5w4RSTHMQWF6hEQjJMJWCX6MRoYJhnlN5i-5CWBNCuOR8hH6mbaYrvY3uYDPto6udcbrJDi6YLrjYZ3Xns7iyWeXCttHGbmwbs7DSTdMds6OO1qedwna319F17T26qXUT7MPfHaPF-9ti9onn3x9fs-kcGyYgYgOUiBKq2lQEykklWFkKXQAYxrituOacmbooSkmKwkjJKaGGG1uAsJQDG6Pnofao21q3S7Xu9r5ND1Xfh9OqOSmbEmmSnQQ_DfDWd7u9DfFC0wnlFHKa_IwRDJTxXQje1mrr3Ub7XgFRZ8tqsKxSrzpbVudmOmRCYtul9Zfm_0O_bCl_gQ</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Ye, Keqi</creator><creator>Zhao, Yuelin</creator><creator>Wu, Feng</creator><creator>Zhong, Wanxie</creator><general>Shanghai University</general><general>Springer Nature B.V</general><general>State Key Laboratory of Structural Analysis of Industrial Equipment,Department of Engineering Mechanics,Faculty of Vehicle Engineering and Mechanics,Dalian University of Technology,Dalian 116023,Shenyang Province,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20220201</creationdate><title>An adaptive artificial viscosity for the displacement shallow water wave equation</title><author>Ye, Keqi ; Zhao, Yuelin ; Wu, Feng ; Zhong, Wanxie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-c1205b1dfcd01b6d53bb5a911c334ed4a443cf99b7099c774202c4ce915e2413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Classical Mechanics</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Perturbation methods</topic><topic>Shallow water</topic><topic>Shock waves</topic><topic>Viscosity</topic><topic>Water waves</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Keqi</creatorcontrib><creatorcontrib>Zhao, Yuelin</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Zhong, Wanxie</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Keqi</au><au>Zhao, Yuelin</au><au>Wu, Feng</au><au>Zhong, Wanxie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An adaptive artificial viscosity for the displacement shallow water wave equation</atitle><jtitle>Applied mathematics and mechanics</jtitle><stitle>Appl. Math. Mech.-Engl. Ed</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>43</volume><issue>2</issue><spage>247</spage><epage>262</epage><pages>247-262</pages><issn>0253-4827</issn><eissn>1573-2754</eissn><abstract>The numerical oscillation problem is a difficulty for the simulation of rapidly varying shallow water surfaces which are often caused by the unsmooth uneven bottom, the moving wet-dry interface, and so on. In this paper, an adaptive artificial viscosity (AAV) is proposed and combined with the displacement shallow water wave equation (DSWWE) to establish an effective model which can accurately predict the evolution of multiple shocks effected by the uneven bottom and the wet-dry interface. The effectiveness of the proposed AAV is first illustrated by using the steady-state solution and the small perturbation analysis. Then, the action mechanism of the AAV on the shallow water waves with the uneven bottom is explained by using the Fourier theory. It is shown that the AVV can suppress the wave with the large wave number, and can also suppress the numerical oscillations for the rapidly varying bottom. Finally, four numerical examples are given, and the numerical results show that the DSWWE combined with the AAV can effectively simulate the shock waves, accurately capture the movements of wet-dry interfaces, and precisely preserve the mass.</abstract><cop>Shanghai</cop><pub>Shanghai University</pub><doi>10.1007/s10483-022-2815-7</doi><tpages>16</tpages><edition>English ed.</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-4827 |
ispartof | Applied mathematics and mechanics, 2022-02, Vol.43 (2), p.247-262 |
issn | 0253-4827 1573-2754 |
language | eng |
recordid | cdi_wanfang_journals_yysxhlx_e202202007 |
source | SpringerNature Journals; Alma/SFX Local Collection |
subjects | Applications of Mathematics Classical Mechanics Fluid- and Aerodynamics Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Partial Differential Equations Perturbation methods Shallow water Shock waves Viscosity Water waves Wave equations |
title | An adaptive artificial viscosity for the displacement shallow water wave equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A33%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20adaptive%20artificial%20viscosity%20for%20the%20displacement%20shallow%20water%20wave%20equation&rft.jtitle=Applied%20mathematics%20and%20mechanics&rft.au=Ye,%20Keqi&rft.date=2022-02-01&rft.volume=43&rft.issue=2&rft.spage=247&rft.epage=262&rft.pages=247-262&rft.issn=0253-4827&rft.eissn=1573-2754&rft_id=info:doi/10.1007/s10483-022-2815-7&rft_dat=%3Cwanfang_jour_proqu%3Eyysxhlx_e202202007%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624218225&rft_id=info:pmid/&rft_wanfj_id=yysxhlx_e202202007&rfr_iscdi=true |