Description of inverse energy cascade in homogeneous isotropic turbulence using an eigenvalue method
A description of inverse energy cascade (from small scale to large scale) in homogeneous isotropic turbulence is introduced by using an eigenvalue method. We show a special isotropic turbulence, in which the initial condition is constructed by reversing the velocity field in space, i.e., the time-re...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and mechanics 2021-09, Vol.42 (9), p.1233-1246 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1246 |
---|---|
container_issue | 9 |
container_start_page | 1233 |
container_title | Applied mathematics and mechanics |
container_volume | 42 |
creator | Liu, Feng Liu, Hantao Zhao, Hongkai Lyu, Pengfei |
description | A description of inverse energy cascade (from small scale to large scale) in homogeneous isotropic turbulence is introduced by using an eigenvalue method. We show a special isotropic turbulence, in which the initial condition is constructed by reversing the velocity field in space, i.e., the time-reversed turbulence. It is shown that the product of eigenvalues of the rate-of-strain tensor can quantitatively describe the backward energy transfer process. This description is consistent to the velocity derivative skewness
S
k
. However, compared with
S
k
, it is easier to be obtained, and it is expected to be extended to anisotropic turbulence. Furthermore, this description also works for the resolved velocity field, which means that it can be used in engineering turbulent flows. The description presented here is desired to inspire future investigation for the modeling of the backward energy transfer process and lay the foundation for the accurate prediction of complex flows. |
doi_str_mv | 10.1007/s10483-021-2767-7 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_yysxhlx_e202109002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>yysxhlx_e202109002</wanfj_id><sourcerecordid>yysxhlx_e202109002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-fa6e1fd600b383c80216cf0dbd910f960b1534d2494d1749ae028f3bb05add3f3</originalsourceid><addsrcrecordid>eNp1kE9r3DAQxUVJoJs0HyA3QW8Ft6M_tuxj2SRtYaGX9ixkaeT1sittJXuT_fZRcGBPPQ3z-L03zCPknsFXBqC-ZQayFRVwVnHVqEp9ICtWK1G2Wl6RFfBaVLLl6iO5yXkHAFJJuSLuAbNN43EaY6DR0zGcMGWkGDANZ2pNtsZhkek2HuJQ5DhnOuY4pXgcLZ3m1M97DBbpnMcwUBMojoU7mf2M9IDTNrpP5Nqbfca793lL_j49_ln_rDa_f_xaf99UlrdsqrxpkHnXAPSiFbYtzzTWg-tdx8B3DfSsFtJx2UnHlOwMAm-96HuojXPCi1vyZcl9NsGbMOhdnFMoF_X5nF-2-xeNvIRCB8AL_HmBjyn-mzFPF5rXSirVcsYKxRbKpphzQq-PaTyYdNYM9Fvzemlel1z91rxWxcMXTy5sGDBdkv9vegUxEoef</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574778211</pqid></control><display><type>article</type><title>Description of inverse energy cascade in homogeneous isotropic turbulence using an eigenvalue method</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Liu, Feng ; Liu, Hantao ; Zhao, Hongkai ; Lyu, Pengfei</creator><creatorcontrib>Liu, Feng ; Liu, Hantao ; Zhao, Hongkai ; Lyu, Pengfei</creatorcontrib><description>A description of inverse energy cascade (from small scale to large scale) in homogeneous isotropic turbulence is introduced by using an eigenvalue method. We show a special isotropic turbulence, in which the initial condition is constructed by reversing the velocity field in space, i.e., the time-reversed turbulence. It is shown that the product of eigenvalues of the rate-of-strain tensor can quantitatively describe the backward energy transfer process. This description is consistent to the velocity derivative skewness
S
k
. However, compared with
S
k
, it is easier to be obtained, and it is expected to be extended to anisotropic turbulence. Furthermore, this description also works for the resolved velocity field, which means that it can be used in engineering turbulent flows. The description presented here is desired to inspire future investigation for the modeling of the backward energy transfer process and lay the foundation for the accurate prediction of complex flows.</description><edition>English ed.</edition><identifier>ISSN: 0253-4827</identifier><identifier>EISSN: 1573-2754</identifier><identifier>DOI: 10.1007/s10483-021-2767-7</identifier><language>eng</language><publisher>Shanghai: Shanghai University</publisher><subject>Applications of Mathematics ; Classical Mechanics ; Eigenvalues ; Energy transfer ; Fluid- and Aerodynamics ; Isotropic turbulence ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Tensors ; Velocity distribution</subject><ispartof>Applied mathematics and mechanics, 2021-09, Vol.42 (9), p.1233-1246</ispartof><rights>Shanghai University 2021</rights><rights>Shanghai University 2021.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-fa6e1fd600b383c80216cf0dbd910f960b1534d2494d1749ae028f3bb05add3f3</citedby><cites>FETCH-LOGICAL-c281t-fa6e1fd600b383c80216cf0dbd910f960b1534d2494d1749ae028f3bb05add3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/yysxhlx-e/yysxhlx-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10483-021-2767-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10483-021-2767-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Liu, Feng</creatorcontrib><creatorcontrib>Liu, Hantao</creatorcontrib><creatorcontrib>Zhao, Hongkai</creatorcontrib><creatorcontrib>Lyu, Pengfei</creatorcontrib><title>Description of inverse energy cascade in homogeneous isotropic turbulence using an eigenvalue method</title><title>Applied mathematics and mechanics</title><addtitle>Appl. Math. Mech.-Engl. Ed</addtitle><description>A description of inverse energy cascade (from small scale to large scale) in homogeneous isotropic turbulence is introduced by using an eigenvalue method. We show a special isotropic turbulence, in which the initial condition is constructed by reversing the velocity field in space, i.e., the time-reversed turbulence. It is shown that the product of eigenvalues of the rate-of-strain tensor can quantitatively describe the backward energy transfer process. This description is consistent to the velocity derivative skewness
S
k
. However, compared with
S
k
, it is easier to be obtained, and it is expected to be extended to anisotropic turbulence. Furthermore, this description also works for the resolved velocity field, which means that it can be used in engineering turbulent flows. The description presented here is desired to inspire future investigation for the modeling of the backward energy transfer process and lay the foundation for the accurate prediction of complex flows.</description><subject>Applications of Mathematics</subject><subject>Classical Mechanics</subject><subject>Eigenvalues</subject><subject>Energy transfer</subject><subject>Fluid- and Aerodynamics</subject><subject>Isotropic turbulence</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Tensors</subject><subject>Velocity distribution</subject><issn>0253-4827</issn><issn>1573-2754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE9r3DAQxUVJoJs0HyA3QW8Ft6M_tuxj2SRtYaGX9ixkaeT1sittJXuT_fZRcGBPPQ3z-L03zCPknsFXBqC-ZQayFRVwVnHVqEp9ICtWK1G2Wl6RFfBaVLLl6iO5yXkHAFJJuSLuAbNN43EaY6DR0zGcMGWkGDANZ2pNtsZhkek2HuJQ5DhnOuY4pXgcLZ3m1M97DBbpnMcwUBMojoU7mf2M9IDTNrpP5Nqbfca793lL_j49_ln_rDa_f_xaf99UlrdsqrxpkHnXAPSiFbYtzzTWg-tdx8B3DfSsFtJx2UnHlOwMAm-96HuojXPCi1vyZcl9NsGbMOhdnFMoF_X5nF-2-xeNvIRCB8AL_HmBjyn-mzFPF5rXSirVcsYKxRbKpphzQq-PaTyYdNYM9Fvzemlel1z91rxWxcMXTy5sGDBdkv9vegUxEoef</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Liu, Feng</creator><creator>Liu, Hantao</creator><creator>Zhao, Hongkai</creator><creator>Lyu, Pengfei</creator><general>Shanghai University</general><general>Springer Nature B.V</general><general>Research Center of Shanxi Province for Solar Energy Engineering and Technology,School of Energy and Power Engineering,North University of China,Taiyuan 030051,China%National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics,School of Energy and Power Engineering,Beihang University,Beijing 100191,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20210901</creationdate><title>Description of inverse energy cascade in homogeneous isotropic turbulence using an eigenvalue method</title><author>Liu, Feng ; Liu, Hantao ; Zhao, Hongkai ; Lyu, Pengfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-fa6e1fd600b383c80216cf0dbd910f960b1534d2494d1749ae028f3bb05add3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of Mathematics</topic><topic>Classical Mechanics</topic><topic>Eigenvalues</topic><topic>Energy transfer</topic><topic>Fluid- and Aerodynamics</topic><topic>Isotropic turbulence</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Tensors</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Feng</creatorcontrib><creatorcontrib>Liu, Hantao</creatorcontrib><creatorcontrib>Zhao, Hongkai</creatorcontrib><creatorcontrib>Lyu, Pengfei</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Feng</au><au>Liu, Hantao</au><au>Zhao, Hongkai</au><au>Lyu, Pengfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Description of inverse energy cascade in homogeneous isotropic turbulence using an eigenvalue method</atitle><jtitle>Applied mathematics and mechanics</jtitle><stitle>Appl. Math. Mech.-Engl. Ed</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>42</volume><issue>9</issue><spage>1233</spage><epage>1246</epage><pages>1233-1246</pages><issn>0253-4827</issn><eissn>1573-2754</eissn><abstract>A description of inverse energy cascade (from small scale to large scale) in homogeneous isotropic turbulence is introduced by using an eigenvalue method. We show a special isotropic turbulence, in which the initial condition is constructed by reversing the velocity field in space, i.e., the time-reversed turbulence. It is shown that the product of eigenvalues of the rate-of-strain tensor can quantitatively describe the backward energy transfer process. This description is consistent to the velocity derivative skewness
S
k
. However, compared with
S
k
, it is easier to be obtained, and it is expected to be extended to anisotropic turbulence. Furthermore, this description also works for the resolved velocity field, which means that it can be used in engineering turbulent flows. The description presented here is desired to inspire future investigation for the modeling of the backward energy transfer process and lay the foundation for the accurate prediction of complex flows.</abstract><cop>Shanghai</cop><pub>Shanghai University</pub><doi>10.1007/s10483-021-2767-7</doi><tpages>14</tpages><edition>English ed.</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-4827 |
ispartof | Applied mathematics and mechanics, 2021-09, Vol.42 (9), p.1233-1246 |
issn | 0253-4827 1573-2754 |
language | eng |
recordid | cdi_wanfang_journals_yysxhlx_e202109002 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Classical Mechanics Eigenvalues Energy transfer Fluid- and Aerodynamics Isotropic turbulence Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Partial Differential Equations Tensors Velocity distribution |
title | Description of inverse energy cascade in homogeneous isotropic turbulence using an eigenvalue method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A28%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Description%20of%20inverse%20energy%20cascade%20in%20homogeneous%20isotropic%20turbulence%20using%20an%20eigenvalue%20method&rft.jtitle=Applied%20mathematics%20and%20mechanics&rft.au=Liu,%20Feng&rft.date=2021-09-01&rft.volume=42&rft.issue=9&rft.spage=1233&rft.epage=1246&rft.pages=1233-1246&rft.issn=0253-4827&rft.eissn=1573-2754&rft_id=info:doi/10.1007/s10483-021-2767-7&rft_dat=%3Cwanfang_jour_proqu%3Eyysxhlx_e202109002%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574778211&rft_id=info:pmid/&rft_wanfj_id=yysxhlx_e202109002&rfr_iscdi=true |