Description of inverse energy cascade in homogeneous isotropic turbulence using an eigenvalue method

A description of inverse energy cascade (from small scale to large scale) in homogeneous isotropic turbulence is introduced by using an eigenvalue method. We show a special isotropic turbulence, in which the initial condition is constructed by reversing the velocity field in space, i.e., the time-re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and mechanics 2021-09, Vol.42 (9), p.1233-1246
Hauptverfasser: Liu, Feng, Liu, Hantao, Zhao, Hongkai, Lyu, Pengfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1246
container_issue 9
container_start_page 1233
container_title Applied mathematics and mechanics
container_volume 42
creator Liu, Feng
Liu, Hantao
Zhao, Hongkai
Lyu, Pengfei
description A description of inverse energy cascade (from small scale to large scale) in homogeneous isotropic turbulence is introduced by using an eigenvalue method. We show a special isotropic turbulence, in which the initial condition is constructed by reversing the velocity field in space, i.e., the time-reversed turbulence. It is shown that the product of eigenvalues of the rate-of-strain tensor can quantitatively describe the backward energy transfer process. This description is consistent to the velocity derivative skewness S k . However, compared with S k , it is easier to be obtained, and it is expected to be extended to anisotropic turbulence. Furthermore, this description also works for the resolved velocity field, which means that it can be used in engineering turbulent flows. The description presented here is desired to inspire future investigation for the modeling of the backward energy transfer process and lay the foundation for the accurate prediction of complex flows.
doi_str_mv 10.1007/s10483-021-2767-7
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_yysxhlx_e202109002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>yysxhlx_e202109002</wanfj_id><sourcerecordid>yysxhlx_e202109002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-fa6e1fd600b383c80216cf0dbd910f960b1534d2494d1749ae028f3bb05add3f3</originalsourceid><addsrcrecordid>eNp1kE9r3DAQxUVJoJs0HyA3QW8Ft6M_tuxj2SRtYaGX9ixkaeT1sittJXuT_fZRcGBPPQ3z-L03zCPknsFXBqC-ZQayFRVwVnHVqEp9ICtWK1G2Wl6RFfBaVLLl6iO5yXkHAFJJuSLuAbNN43EaY6DR0zGcMGWkGDANZ2pNtsZhkek2HuJQ5DhnOuY4pXgcLZ3m1M97DBbpnMcwUBMojoU7mf2M9IDTNrpP5Nqbfca793lL_j49_ln_rDa_f_xaf99UlrdsqrxpkHnXAPSiFbYtzzTWg-tdx8B3DfSsFtJx2UnHlOwMAm-96HuojXPCi1vyZcl9NsGbMOhdnFMoF_X5nF-2-xeNvIRCB8AL_HmBjyn-mzFPF5rXSirVcsYKxRbKpphzQq-PaTyYdNYM9Fvzemlel1z91rxWxcMXTy5sGDBdkv9vegUxEoef</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574778211</pqid></control><display><type>article</type><title>Description of inverse energy cascade in homogeneous isotropic turbulence using an eigenvalue method</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Liu, Feng ; Liu, Hantao ; Zhao, Hongkai ; Lyu, Pengfei</creator><creatorcontrib>Liu, Feng ; Liu, Hantao ; Zhao, Hongkai ; Lyu, Pengfei</creatorcontrib><description>A description of inverse energy cascade (from small scale to large scale) in homogeneous isotropic turbulence is introduced by using an eigenvalue method. We show a special isotropic turbulence, in which the initial condition is constructed by reversing the velocity field in space, i.e., the time-reversed turbulence. It is shown that the product of eigenvalues of the rate-of-strain tensor can quantitatively describe the backward energy transfer process. This description is consistent to the velocity derivative skewness S k . However, compared with S k , it is easier to be obtained, and it is expected to be extended to anisotropic turbulence. Furthermore, this description also works for the resolved velocity field, which means that it can be used in engineering turbulent flows. The description presented here is desired to inspire future investigation for the modeling of the backward energy transfer process and lay the foundation for the accurate prediction of complex flows.</description><edition>English ed.</edition><identifier>ISSN: 0253-4827</identifier><identifier>EISSN: 1573-2754</identifier><identifier>DOI: 10.1007/s10483-021-2767-7</identifier><language>eng</language><publisher>Shanghai: Shanghai University</publisher><subject>Applications of Mathematics ; Classical Mechanics ; Eigenvalues ; Energy transfer ; Fluid- and Aerodynamics ; Isotropic turbulence ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Tensors ; Velocity distribution</subject><ispartof>Applied mathematics and mechanics, 2021-09, Vol.42 (9), p.1233-1246</ispartof><rights>Shanghai University 2021</rights><rights>Shanghai University 2021.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-fa6e1fd600b383c80216cf0dbd910f960b1534d2494d1749ae028f3bb05add3f3</citedby><cites>FETCH-LOGICAL-c281t-fa6e1fd600b383c80216cf0dbd910f960b1534d2494d1749ae028f3bb05add3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/yysxhlx-e/yysxhlx-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10483-021-2767-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10483-021-2767-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Liu, Feng</creatorcontrib><creatorcontrib>Liu, Hantao</creatorcontrib><creatorcontrib>Zhao, Hongkai</creatorcontrib><creatorcontrib>Lyu, Pengfei</creatorcontrib><title>Description of inverse energy cascade in homogeneous isotropic turbulence using an eigenvalue method</title><title>Applied mathematics and mechanics</title><addtitle>Appl. Math. Mech.-Engl. Ed</addtitle><description>A description of inverse energy cascade (from small scale to large scale) in homogeneous isotropic turbulence is introduced by using an eigenvalue method. We show a special isotropic turbulence, in which the initial condition is constructed by reversing the velocity field in space, i.e., the time-reversed turbulence. It is shown that the product of eigenvalues of the rate-of-strain tensor can quantitatively describe the backward energy transfer process. This description is consistent to the velocity derivative skewness S k . However, compared with S k , it is easier to be obtained, and it is expected to be extended to anisotropic turbulence. Furthermore, this description also works for the resolved velocity field, which means that it can be used in engineering turbulent flows. The description presented here is desired to inspire future investigation for the modeling of the backward energy transfer process and lay the foundation for the accurate prediction of complex flows.</description><subject>Applications of Mathematics</subject><subject>Classical Mechanics</subject><subject>Eigenvalues</subject><subject>Energy transfer</subject><subject>Fluid- and Aerodynamics</subject><subject>Isotropic turbulence</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Tensors</subject><subject>Velocity distribution</subject><issn>0253-4827</issn><issn>1573-2754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE9r3DAQxUVJoJs0HyA3QW8Ft6M_tuxj2SRtYaGX9ixkaeT1sittJXuT_fZRcGBPPQ3z-L03zCPknsFXBqC-ZQayFRVwVnHVqEp9ICtWK1G2Wl6RFfBaVLLl6iO5yXkHAFJJuSLuAbNN43EaY6DR0zGcMGWkGDANZ2pNtsZhkek2HuJQ5DhnOuY4pXgcLZ3m1M97DBbpnMcwUBMojoU7mf2M9IDTNrpP5Nqbfca793lL_j49_ln_rDa_f_xaf99UlrdsqrxpkHnXAPSiFbYtzzTWg-tdx8B3DfSsFtJx2UnHlOwMAm-96HuojXPCi1vyZcl9NsGbMOhdnFMoF_X5nF-2-xeNvIRCB8AL_HmBjyn-mzFPF5rXSirVcsYKxRbKpphzQq-PaTyYdNYM9Fvzemlel1z91rxWxcMXTy5sGDBdkv9vegUxEoef</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Liu, Feng</creator><creator>Liu, Hantao</creator><creator>Zhao, Hongkai</creator><creator>Lyu, Pengfei</creator><general>Shanghai University</general><general>Springer Nature B.V</general><general>Research Center of Shanxi Province for Solar Energy Engineering and Technology,School of Energy and Power Engineering,North University of China,Taiyuan 030051,China%National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics,School of Energy and Power Engineering,Beihang University,Beijing 100191,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20210901</creationdate><title>Description of inverse energy cascade in homogeneous isotropic turbulence using an eigenvalue method</title><author>Liu, Feng ; Liu, Hantao ; Zhao, Hongkai ; Lyu, Pengfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-fa6e1fd600b383c80216cf0dbd910f960b1534d2494d1749ae028f3bb05add3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of Mathematics</topic><topic>Classical Mechanics</topic><topic>Eigenvalues</topic><topic>Energy transfer</topic><topic>Fluid- and Aerodynamics</topic><topic>Isotropic turbulence</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Tensors</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Feng</creatorcontrib><creatorcontrib>Liu, Hantao</creatorcontrib><creatorcontrib>Zhao, Hongkai</creatorcontrib><creatorcontrib>Lyu, Pengfei</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Feng</au><au>Liu, Hantao</au><au>Zhao, Hongkai</au><au>Lyu, Pengfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Description of inverse energy cascade in homogeneous isotropic turbulence using an eigenvalue method</atitle><jtitle>Applied mathematics and mechanics</jtitle><stitle>Appl. Math. Mech.-Engl. Ed</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>42</volume><issue>9</issue><spage>1233</spage><epage>1246</epage><pages>1233-1246</pages><issn>0253-4827</issn><eissn>1573-2754</eissn><abstract>A description of inverse energy cascade (from small scale to large scale) in homogeneous isotropic turbulence is introduced by using an eigenvalue method. We show a special isotropic turbulence, in which the initial condition is constructed by reversing the velocity field in space, i.e., the time-reversed turbulence. It is shown that the product of eigenvalues of the rate-of-strain tensor can quantitatively describe the backward energy transfer process. This description is consistent to the velocity derivative skewness S k . However, compared with S k , it is easier to be obtained, and it is expected to be extended to anisotropic turbulence. Furthermore, this description also works for the resolved velocity field, which means that it can be used in engineering turbulent flows. The description presented here is desired to inspire future investigation for the modeling of the backward energy transfer process and lay the foundation for the accurate prediction of complex flows.</abstract><cop>Shanghai</cop><pub>Shanghai University</pub><doi>10.1007/s10483-021-2767-7</doi><tpages>14</tpages><edition>English ed.</edition></addata></record>
fulltext fulltext
identifier ISSN: 0253-4827
ispartof Applied mathematics and mechanics, 2021-09, Vol.42 (9), p.1233-1246
issn 0253-4827
1573-2754
language eng
recordid cdi_wanfang_journals_yysxhlx_e202109002
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Classical Mechanics
Eigenvalues
Energy transfer
Fluid- and Aerodynamics
Isotropic turbulence
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Partial Differential Equations
Tensors
Velocity distribution
title Description of inverse energy cascade in homogeneous isotropic turbulence using an eigenvalue method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A28%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Description%20of%20inverse%20energy%20cascade%20in%20homogeneous%20isotropic%20turbulence%20using%20an%20eigenvalue%20method&rft.jtitle=Applied%20mathematics%20and%20mechanics&rft.au=Liu,%20Feng&rft.date=2021-09-01&rft.volume=42&rft.issue=9&rft.spage=1233&rft.epage=1246&rft.pages=1233-1246&rft.issn=0253-4827&rft.eissn=1573-2754&rft_id=info:doi/10.1007/s10483-021-2767-7&rft_dat=%3Cwanfang_jour_proqu%3Eyysxhlx_e202109002%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574778211&rft_id=info:pmid/&rft_wanfj_id=yysxhlx_e202109002&rfr_iscdi=true