Reflection and transmission of quasi-plane waves at the interface of piezoelectric semiconductors with initial stresses

We examine the reflection and transmission phenomena of quasi-longitudinal plane (QP) waves in an AlN-ZnO laminated composite structure. The structure is designed under the influence of the initial stresses in which one carrier piezoelectric semiconductor (PSC) half-space is in welded contact with a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and mechanics 2021-07, Vol.42 (7), p.951-968
Hauptverfasser: Sahu, S. A., Nirwal, S., Mondal, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We examine the reflection and transmission phenomena of quasi-longitudinal plane (QP) waves in an AlN-ZnO laminated composite structure. The structure is designed under the influence of the initial stresses in which one carrier piezoelectric semiconductor (PSC) half-space is in welded contact with another PSC half-space. The secular equations in the transversely isotropic PSC material are derived from the general dynamic equation, taking the initial stresses into consideration. It is shown that the incident quasi-longitudinal wave (QP-mode) at the interface generates four types of reflected and transmitted waves, namely, QP wave, quasi-transverse (QSV) wave, electric-acoustic (EA) wave, and carrier plane (CP) wave. The algebraic equations are obtained by imposing the boundary conditions on the common interface of the laminated structure. Reflection and transmission coefficients of waves are obtained by implementing Cramer’s rule. Profound impacts of the initial stresses and exterior electric biasing field on the reflection and transmission coefficients of waves are investigated and presented graphically.
ISSN:0253-4827
1573-2754
DOI:10.1007/s10483-021-2738-9