Meshless acoustic analysis using a weakly singular Burton-Miller boundary integral formulation
The Burton-Miller boundary integral formulation is solved by a complex variable boundary element-free method (CVBEFM) for the boundary-only meshless analysis of acoustic problems with arbitrary wavenumbers. To regularize both strongly singular and hypersingular integrals and to avoid the computation...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and mechanics 2020-12, Vol.41 (12), p.1897-1914 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1914 |
---|---|
container_issue | 12 |
container_start_page | 1897 |
container_title | Applied mathematics and mechanics |
container_volume | 41 |
creator | Chen, Linchong Li, Xiaolin |
description | The Burton-Miller boundary integral formulation is solved by a complex variable boundary element-free method (CVBEFM) for the boundary-only meshless analysis of acoustic problems with arbitrary wavenumbers. To regularize both strongly singular and hypersingular integrals and to avoid the computation of the solid angle and its normal derivative, a weakly singular Burton-Miller formulation is derived by considering the normal derivative of the solid angle and adopting the singularity subtraction procedures. To facilitate the implementation of the CVBEFM and the approximation of gradients of the boundary variables, a stabilized complex variable moving least-square approximation is selected in the meshless discretization procedure. The results show the accuracy and efficiency of the present CVBEFM and reveal that the method can produce satisfactory results for all wavenumbers, even for extremely large wavenumbers such as
κ
= 10 000. |
doi_str_mv | 10.1007/s10483-020-2674-6 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_yysxhlx_e202012010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>yysxhlx_e202012010</wanfj_id><sourcerecordid>yysxhlx_e202012010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-3d18cfd1382045b6663e5b989295ac1dbbf4296141a607ff127714449f923b8e3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG85C9F8tWmPuvgFu3jRqyFtk27XbCqZlt3-e7Os4EkYGAaed4Z5ELpm9JZRqu6AUVkIQjklPFeS5CdoxjIlCFeZPEUzyjNBZMHVOboA2FBKpZJyhj5XFtbeAmBT9yMMXY1NMH6CDvAIXWixwTtrvvyED9PoTcQPYxz6QFad9zbiqh9DY-KEuzDYNhqPXR-3CRy6PlyiM2c82KvfPkcfT4_vixeyfHt-XdwvSS1YMRDRsKJ2DRMFpzKr8jwXNqvKouRlZmrWVJWTvMyZZCanyjnGlWJSytKVXFSFFXN0c9y7M8GZ0OpNP8b0B-hpgv3a77XlyQ1LRRPMjnAde4Bonf6O3Ta9oBnVB5v6aFOnhD7Y1HnK8GMGEhtaG_8u_B_6AapNeLY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Meshless acoustic analysis using a weakly singular Burton-Miller boundary integral formulation</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Chen, Linchong ; Li, Xiaolin</creator><creatorcontrib>Chen, Linchong ; Li, Xiaolin</creatorcontrib><description>The Burton-Miller boundary integral formulation is solved by a complex variable boundary element-free method (CVBEFM) for the boundary-only meshless analysis of acoustic problems with arbitrary wavenumbers. To regularize both strongly singular and hypersingular integrals and to avoid the computation of the solid angle and its normal derivative, a weakly singular Burton-Miller formulation is derived by considering the normal derivative of the solid angle and adopting the singularity subtraction procedures. To facilitate the implementation of the CVBEFM and the approximation of gradients of the boundary variables, a stabilized complex variable moving least-square approximation is selected in the meshless discretization procedure. The results show the accuracy and efficiency of the present CVBEFM and reveal that the method can produce satisfactory results for all wavenumbers, even for extremely large wavenumbers such as
κ
= 10 000.</description><identifier>ISSN: 0253-4827</identifier><identifier>EISSN: 1573-2754</identifier><identifier>DOI: 10.1007/s10483-020-2674-6</identifier><language>eng</language><publisher>Shanghai: Shanghai University</publisher><subject>Applications of Mathematics ; Classical Mechanics ; Fluid- and Aerodynamics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations</subject><ispartof>Applied mathematics and mechanics, 2020-12, Vol.41 (12), p.1897-1914</ispartof><rights>The Author(s) 2020</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c318t-3d18cfd1382045b6663e5b989295ac1dbbf4296141a607ff127714449f923b8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/yysxhlx-e/yysxhlx-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10483-020-2674-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10483-020-2674-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chen, Linchong</creatorcontrib><creatorcontrib>Li, Xiaolin</creatorcontrib><title>Meshless acoustic analysis using a weakly singular Burton-Miller boundary integral formulation</title><title>Applied mathematics and mechanics</title><addtitle>Appl. Math. Mech.-Engl. Ed</addtitle><description>The Burton-Miller boundary integral formulation is solved by a complex variable boundary element-free method (CVBEFM) for the boundary-only meshless analysis of acoustic problems with arbitrary wavenumbers. To regularize both strongly singular and hypersingular integrals and to avoid the computation of the solid angle and its normal derivative, a weakly singular Burton-Miller formulation is derived by considering the normal derivative of the solid angle and adopting the singularity subtraction procedures. To facilitate the implementation of the CVBEFM and the approximation of gradients of the boundary variables, a stabilized complex variable moving least-square approximation is selected in the meshless discretization procedure. The results show the accuracy and efficiency of the present CVBEFM and reveal that the method can produce satisfactory results for all wavenumbers, even for extremely large wavenumbers such as
κ
= 10 000.</description><subject>Applications of Mathematics</subject><subject>Classical Mechanics</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><issn>0253-4827</issn><issn>1573-2754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG85C9F8tWmPuvgFu3jRqyFtk27XbCqZlt3-e7Os4EkYGAaed4Z5ELpm9JZRqu6AUVkIQjklPFeS5CdoxjIlCFeZPEUzyjNBZMHVOboA2FBKpZJyhj5XFtbeAmBT9yMMXY1NMH6CDvAIXWixwTtrvvyED9PoTcQPYxz6QFad9zbiqh9DY-KEuzDYNhqPXR-3CRy6PlyiM2c82KvfPkcfT4_vixeyfHt-XdwvSS1YMRDRsKJ2DRMFpzKr8jwXNqvKouRlZmrWVJWTvMyZZCanyjnGlWJSytKVXFSFFXN0c9y7M8GZ0OpNP8b0B-hpgv3a77XlyQ1LRRPMjnAde4Bonf6O3Ta9oBnVB5v6aFOnhD7Y1HnK8GMGEhtaG_8u_B_6AapNeLY</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Chen, Linchong</creator><creator>Li, Xiaolin</creator><general>Shanghai University</general><general>School of Mathematics and Information Engineering, Chongqing University of Education, Chongqing 400065, China%School of Mathematical Sciences, Chongqing Normal University, Chongqing 400047, China</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20201201</creationdate><title>Meshless acoustic analysis using a weakly singular Burton-Miller boundary integral formulation</title><author>Chen, Linchong ; Li, Xiaolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-3d18cfd1382045b6663e5b989295ac1dbbf4296141a607ff127714449f923b8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Classical Mechanics</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Linchong</creatorcontrib><creatorcontrib>Li, Xiaolin</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Linchong</au><au>Li, Xiaolin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Meshless acoustic analysis using a weakly singular Burton-Miller boundary integral formulation</atitle><jtitle>Applied mathematics and mechanics</jtitle><stitle>Appl. Math. Mech.-Engl. Ed</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>41</volume><issue>12</issue><spage>1897</spage><epage>1914</epage><pages>1897-1914</pages><issn>0253-4827</issn><eissn>1573-2754</eissn><abstract>The Burton-Miller boundary integral formulation is solved by a complex variable boundary element-free method (CVBEFM) for the boundary-only meshless analysis of acoustic problems with arbitrary wavenumbers. To regularize both strongly singular and hypersingular integrals and to avoid the computation of the solid angle and its normal derivative, a weakly singular Burton-Miller formulation is derived by considering the normal derivative of the solid angle and adopting the singularity subtraction procedures. To facilitate the implementation of the CVBEFM and the approximation of gradients of the boundary variables, a stabilized complex variable moving least-square approximation is selected in the meshless discretization procedure. The results show the accuracy and efficiency of the present CVBEFM and reveal that the method can produce satisfactory results for all wavenumbers, even for extremely large wavenumbers such as
κ
= 10 000.</abstract><cop>Shanghai</cop><pub>Shanghai University</pub><doi>10.1007/s10483-020-2674-6</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-4827 |
ispartof | Applied mathematics and mechanics, 2020-12, Vol.41 (12), p.1897-1914 |
issn | 0253-4827 1573-2754 |
language | eng |
recordid | cdi_wanfang_journals_yysxhlx_e202012010 |
source | SpringerLink Journals; Alma/SFX Local Collection |
subjects | Applications of Mathematics Classical Mechanics Fluid- and Aerodynamics Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Partial Differential Equations |
title | Meshless acoustic analysis using a weakly singular Burton-Miller boundary integral formulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T08%3A01%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Meshless%20acoustic%20analysis%20using%20a%20weakly%20singular%20Burton-Miller%20boundary%20integral%20formulation&rft.jtitle=Applied%20mathematics%20and%20mechanics&rft.au=Chen,%20Linchong&rft.date=2020-12-01&rft.volume=41&rft.issue=12&rft.spage=1897&rft.epage=1914&rft.pages=1897-1914&rft.issn=0253-4827&rft.eissn=1573-2754&rft_id=info:doi/10.1007/s10483-020-2674-6&rft_dat=%3Cwanfang_jour_cross%3Eyysxhlx_e202012010%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=yysxhlx_e202012010&rfr_iscdi=true |