Meshless acoustic analysis using a weakly singular Burton-Miller boundary integral formulation

The Burton-Miller boundary integral formulation is solved by a complex variable boundary element-free method (CVBEFM) for the boundary-only meshless analysis of acoustic problems with arbitrary wavenumbers. To regularize both strongly singular and hypersingular integrals and to avoid the computation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and mechanics 2020-12, Vol.41 (12), p.1897-1914
Hauptverfasser: Chen, Linchong, Li, Xiaolin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1914
container_issue 12
container_start_page 1897
container_title Applied mathematics and mechanics
container_volume 41
creator Chen, Linchong
Li, Xiaolin
description The Burton-Miller boundary integral formulation is solved by a complex variable boundary element-free method (CVBEFM) for the boundary-only meshless analysis of acoustic problems with arbitrary wavenumbers. To regularize both strongly singular and hypersingular integrals and to avoid the computation of the solid angle and its normal derivative, a weakly singular Burton-Miller formulation is derived by considering the normal derivative of the solid angle and adopting the singularity subtraction procedures. To facilitate the implementation of the CVBEFM and the approximation of gradients of the boundary variables, a stabilized complex variable moving least-square approximation is selected in the meshless discretization procedure. The results show the accuracy and efficiency of the present CVBEFM and reveal that the method can produce satisfactory results for all wavenumbers, even for extremely large wavenumbers such as κ = 10 000.
doi_str_mv 10.1007/s10483-020-2674-6
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_yysxhlx_e202012010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>yysxhlx_e202012010</wanfj_id><sourcerecordid>yysxhlx_e202012010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-3d18cfd1382045b6663e5b989295ac1dbbf4296141a607ff127714449f923b8e3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG85C9F8tWmPuvgFu3jRqyFtk27XbCqZlt3-e7Os4EkYGAaed4Z5ELpm9JZRqu6AUVkIQjklPFeS5CdoxjIlCFeZPEUzyjNBZMHVOboA2FBKpZJyhj5XFtbeAmBT9yMMXY1NMH6CDvAIXWixwTtrvvyED9PoTcQPYxz6QFad9zbiqh9DY-KEuzDYNhqPXR-3CRy6PlyiM2c82KvfPkcfT4_vixeyfHt-XdwvSS1YMRDRsKJ2DRMFpzKr8jwXNqvKouRlZmrWVJWTvMyZZCanyjnGlWJSytKVXFSFFXN0c9y7M8GZ0OpNP8b0B-hpgv3a77XlyQ1LRRPMjnAde4Bonf6O3Ta9oBnVB5v6aFOnhD7Y1HnK8GMGEhtaG_8u_B_6AapNeLY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Meshless acoustic analysis using a weakly singular Burton-Miller boundary integral formulation</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Chen, Linchong ; Li, Xiaolin</creator><creatorcontrib>Chen, Linchong ; Li, Xiaolin</creatorcontrib><description>The Burton-Miller boundary integral formulation is solved by a complex variable boundary element-free method (CVBEFM) for the boundary-only meshless analysis of acoustic problems with arbitrary wavenumbers. To regularize both strongly singular and hypersingular integrals and to avoid the computation of the solid angle and its normal derivative, a weakly singular Burton-Miller formulation is derived by considering the normal derivative of the solid angle and adopting the singularity subtraction procedures. To facilitate the implementation of the CVBEFM and the approximation of gradients of the boundary variables, a stabilized complex variable moving least-square approximation is selected in the meshless discretization procedure. The results show the accuracy and efficiency of the present CVBEFM and reveal that the method can produce satisfactory results for all wavenumbers, even for extremely large wavenumbers such as κ = 10 000.</description><identifier>ISSN: 0253-4827</identifier><identifier>EISSN: 1573-2754</identifier><identifier>DOI: 10.1007/s10483-020-2674-6</identifier><language>eng</language><publisher>Shanghai: Shanghai University</publisher><subject>Applications of Mathematics ; Classical Mechanics ; Fluid- and Aerodynamics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations</subject><ispartof>Applied mathematics and mechanics, 2020-12, Vol.41 (12), p.1897-1914</ispartof><rights>The Author(s) 2020</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c318t-3d18cfd1382045b6663e5b989295ac1dbbf4296141a607ff127714449f923b8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/yysxhlx-e/yysxhlx-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10483-020-2674-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10483-020-2674-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chen, Linchong</creatorcontrib><creatorcontrib>Li, Xiaolin</creatorcontrib><title>Meshless acoustic analysis using a weakly singular Burton-Miller boundary integral formulation</title><title>Applied mathematics and mechanics</title><addtitle>Appl. Math. Mech.-Engl. Ed</addtitle><description>The Burton-Miller boundary integral formulation is solved by a complex variable boundary element-free method (CVBEFM) for the boundary-only meshless analysis of acoustic problems with arbitrary wavenumbers. To regularize both strongly singular and hypersingular integrals and to avoid the computation of the solid angle and its normal derivative, a weakly singular Burton-Miller formulation is derived by considering the normal derivative of the solid angle and adopting the singularity subtraction procedures. To facilitate the implementation of the CVBEFM and the approximation of gradients of the boundary variables, a stabilized complex variable moving least-square approximation is selected in the meshless discretization procedure. The results show the accuracy and efficiency of the present CVBEFM and reveal that the method can produce satisfactory results for all wavenumbers, even for extremely large wavenumbers such as κ = 10 000.</description><subject>Applications of Mathematics</subject><subject>Classical Mechanics</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><issn>0253-4827</issn><issn>1573-2754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG85C9F8tWmPuvgFu3jRqyFtk27XbCqZlt3-e7Os4EkYGAaed4Z5ELpm9JZRqu6AUVkIQjklPFeS5CdoxjIlCFeZPEUzyjNBZMHVOboA2FBKpZJyhj5XFtbeAmBT9yMMXY1NMH6CDvAIXWixwTtrvvyED9PoTcQPYxz6QFad9zbiqh9DY-KEuzDYNhqPXR-3CRy6PlyiM2c82KvfPkcfT4_vixeyfHt-XdwvSS1YMRDRsKJ2DRMFpzKr8jwXNqvKouRlZmrWVJWTvMyZZCanyjnGlWJSytKVXFSFFXN0c9y7M8GZ0OpNP8b0B-hpgv3a77XlyQ1LRRPMjnAde4Bonf6O3Ta9oBnVB5v6aFOnhD7Y1HnK8GMGEhtaG_8u_B_6AapNeLY</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Chen, Linchong</creator><creator>Li, Xiaolin</creator><general>Shanghai University</general><general>School of Mathematics and Information Engineering, Chongqing University of Education, Chongqing 400065, China%School of Mathematical Sciences, Chongqing Normal University, Chongqing 400047, China</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20201201</creationdate><title>Meshless acoustic analysis using a weakly singular Burton-Miller boundary integral formulation</title><author>Chen, Linchong ; Li, Xiaolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-3d18cfd1382045b6663e5b989295ac1dbbf4296141a607ff127714449f923b8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Classical Mechanics</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Linchong</creatorcontrib><creatorcontrib>Li, Xiaolin</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Linchong</au><au>Li, Xiaolin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Meshless acoustic analysis using a weakly singular Burton-Miller boundary integral formulation</atitle><jtitle>Applied mathematics and mechanics</jtitle><stitle>Appl. Math. Mech.-Engl. Ed</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>41</volume><issue>12</issue><spage>1897</spage><epage>1914</epage><pages>1897-1914</pages><issn>0253-4827</issn><eissn>1573-2754</eissn><abstract>The Burton-Miller boundary integral formulation is solved by a complex variable boundary element-free method (CVBEFM) for the boundary-only meshless analysis of acoustic problems with arbitrary wavenumbers. To regularize both strongly singular and hypersingular integrals and to avoid the computation of the solid angle and its normal derivative, a weakly singular Burton-Miller formulation is derived by considering the normal derivative of the solid angle and adopting the singularity subtraction procedures. To facilitate the implementation of the CVBEFM and the approximation of gradients of the boundary variables, a stabilized complex variable moving least-square approximation is selected in the meshless discretization procedure. The results show the accuracy and efficiency of the present CVBEFM and reveal that the method can produce satisfactory results for all wavenumbers, even for extremely large wavenumbers such as κ = 10 000.</abstract><cop>Shanghai</cop><pub>Shanghai University</pub><doi>10.1007/s10483-020-2674-6</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0253-4827
ispartof Applied mathematics and mechanics, 2020-12, Vol.41 (12), p.1897-1914
issn 0253-4827
1573-2754
language eng
recordid cdi_wanfang_journals_yysxhlx_e202012010
source SpringerLink Journals; Alma/SFX Local Collection
subjects Applications of Mathematics
Classical Mechanics
Fluid- and Aerodynamics
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Partial Differential Equations
title Meshless acoustic analysis using a weakly singular Burton-Miller boundary integral formulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T08%3A01%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Meshless%20acoustic%20analysis%20using%20a%20weakly%20singular%20Burton-Miller%20boundary%20integral%20formulation&rft.jtitle=Applied%20mathematics%20and%20mechanics&rft.au=Chen,%20Linchong&rft.date=2020-12-01&rft.volume=41&rft.issue=12&rft.spage=1897&rft.epage=1914&rft.pages=1897-1914&rft.issn=0253-4827&rft.eissn=1573-2754&rft_id=info:doi/10.1007/s10483-020-2674-6&rft_dat=%3Cwanfang_jour_cross%3Eyysxhlx_e202012010%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=yysxhlx_e202012010&rfr_iscdi=true