Dynamic analysis of wind turbine tower structures in complex ocean environment

Studying and analyzing the dynamic behavior of offshore wind turbines are of great importance to ensure the safety and improve the efficiency of such expensive equipments. In this work, a tapered beam model is proposed to investigate the dynamic response of an offshore wind turbine tower on the mono...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and mechanics 2020-07, Vol.41 (7), p.999-1010
Hauptverfasser: Liu, Guanzhong, Guo, Xingming, Zhu, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1010
container_issue 7
container_start_page 999
container_title Applied mathematics and mechanics
container_volume 41
creator Liu, Guanzhong
Guo, Xingming
Zhu, Li
description Studying and analyzing the dynamic behavior of offshore wind turbines are of great importance to ensure the safety and improve the efficiency of such expensive equipments. In this work, a tapered beam model is proposed to investigate the dynamic response of an offshore wind turbine tower on the monopile foundation assembled with rotating blades in the complex ocean environment. Several environment factors like wind, wave, current, and soil resistance are taken into account. The proposed model is analytically solved with the Galerkin method. Based on the numerical results, the effects of various structure parameters including the taper angle, the height and thickness of the tower, the depth, and the diameter and the cement filler of the monopile on the fundamental natural frequency of the wind turbine tower system are investigated in detail. It is found that the fundamental natural frequency decreases with the increase in the taper angle and the height and thickness of the tower, and increases with the increase in the diameter of the monopile. Moreover, filling cement into the monopile can effectively improve the fundamental natural frequency of the wind turbine tower system, but there is a critical value of the amount of cement maximizing the property of the monopile. This research may be helpful in the design and safety evaluation of offshore wind turbines.
doi_str_mv 10.1007/s10483-020-2624-8
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_yysxhlx_e202007002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>yysxhlx_e202007002</wanfj_id><sourcerecordid>yysxhlx_e202007002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-c4819c61d60696c334699f58b919e729368c6014ced8a6742877bc12b1ecc1293</originalsourceid><addsrcrecordid>eNqNkE2LFDEQhoMoOK7-AG8Bb0pr5aPzcZRx_YBFL3oO6Uz1mmUmGZNuZ_rfm6EX9yR4qqJ43qLqIeQlg7cMQL-rDKQRHXDouOKyM4_IhvVadFz38jHZAO9FJw3XT8mzWu8AQGopN-TrhyX5QwzUJ79faqw0j_QU045OcxliQjrlExZapzKHNsJKY6IhH457PNMc0CeK6XcsOR0wTc_Jk9HvK764r1fkx8fr79vP3c23T1-272-6IHo2dUEaZoNiOwXKqiCEVNaOvRkss6i5FcoEBUwG3BmvtORG6yEwPjAMrVhxRV6ve08-jT7durs8l_ZBdctSzz_3Z4e8uQANwBv8aoWPJf-asU4PNJfMGmWNuFBspULJtRYc3bHEgy-LY-Aujt3q2LW97uLYmZYx92fgkMcaIqaAf3NNci-AWaZaB3wbJz_FnLZ5TlOLvvn_aKP5StdGpFssDy_8-7o_dRuelw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419869832</pqid></control><display><type>article</type><title>Dynamic analysis of wind turbine tower structures in complex ocean environment</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Liu, Guanzhong ; Guo, Xingming ; Zhu, Li</creator><creatorcontrib>Liu, Guanzhong ; Guo, Xingming ; Zhu, Li</creatorcontrib><description>Studying and analyzing the dynamic behavior of offshore wind turbines are of great importance to ensure the safety and improve the efficiency of such expensive equipments. In this work, a tapered beam model is proposed to investigate the dynamic response of an offshore wind turbine tower on the monopile foundation assembled with rotating blades in the complex ocean environment. Several environment factors like wind, wave, current, and soil resistance are taken into account. The proposed model is analytically solved with the Galerkin method. Based on the numerical results, the effects of various structure parameters including the taper angle, the height and thickness of the tower, the depth, and the diameter and the cement filler of the monopile on the fundamental natural frequency of the wind turbine tower system are investigated in detail. It is found that the fundamental natural frequency decreases with the increase in the taper angle and the height and thickness of the tower, and increases with the increase in the diameter of the monopile. Moreover, filling cement into the monopile can effectively improve the fundamental natural frequency of the wind turbine tower system, but there is a critical value of the amount of cement maximizing the property of the monopile. This research may be helpful in the design and safety evaluation of offshore wind turbines.</description><edition>English ed.</edition><identifier>ISSN: 0253-4827</identifier><identifier>EISSN: 1573-2754</identifier><identifier>DOI: 10.1007/s10483-020-2624-8</identifier><language>eng</language><publisher>Shanghai: Shanghai University</publisher><subject>Applications of Mathematics ; Classical Mechanics ; Diameters ; Dynamic response ; Fluid- and Aerodynamics ; Galerkin method ; Marine environment ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Mathematics, Applied ; Mechanics ; Offshore ; Offshore structures ; Partial Differential Equations ; Physical Sciences ; Resonant frequencies ; Safety ; Science &amp; Technology ; Soil resistance ; Tapering ; Technology ; Thickness ; Turbines ; Wave resistance ; Wind turbines</subject><ispartof>Applied mathematics and mechanics, 2020-07, Vol.41 (7), p.999-1010</ispartof><rights>Shanghai University and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Shanghai University and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>3</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000530191600002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c351t-c4819c61d60696c334699f58b919e729368c6014ced8a6742877bc12b1ecc1293</citedby><cites>FETCH-LOGICAL-c351t-c4819c61d60696c334699f58b919e729368c6014ced8a6742877bc12b1ecc1293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/yysxhlx-e/yysxhlx-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10483-020-2624-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10483-020-2624-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Liu, Guanzhong</creatorcontrib><creatorcontrib>Guo, Xingming</creatorcontrib><creatorcontrib>Zhu, Li</creatorcontrib><title>Dynamic analysis of wind turbine tower structures in complex ocean environment</title><title>Applied mathematics and mechanics</title><addtitle>Appl. Math. Mech.-Engl. Ed</addtitle><addtitle>APPL MATH MECH-ENGL</addtitle><description>Studying and analyzing the dynamic behavior of offshore wind turbines are of great importance to ensure the safety and improve the efficiency of such expensive equipments. In this work, a tapered beam model is proposed to investigate the dynamic response of an offshore wind turbine tower on the monopile foundation assembled with rotating blades in the complex ocean environment. Several environment factors like wind, wave, current, and soil resistance are taken into account. The proposed model is analytically solved with the Galerkin method. Based on the numerical results, the effects of various structure parameters including the taper angle, the height and thickness of the tower, the depth, and the diameter and the cement filler of the monopile on the fundamental natural frequency of the wind turbine tower system are investigated in detail. It is found that the fundamental natural frequency decreases with the increase in the taper angle and the height and thickness of the tower, and increases with the increase in the diameter of the monopile. Moreover, filling cement into the monopile can effectively improve the fundamental natural frequency of the wind turbine tower system, but there is a critical value of the amount of cement maximizing the property of the monopile. This research may be helpful in the design and safety evaluation of offshore wind turbines.</description><subject>Applications of Mathematics</subject><subject>Classical Mechanics</subject><subject>Diameters</subject><subject>Dynamic response</subject><subject>Fluid- and Aerodynamics</subject><subject>Galerkin method</subject><subject>Marine environment</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics, Applied</subject><subject>Mechanics</subject><subject>Offshore</subject><subject>Offshore structures</subject><subject>Partial Differential Equations</subject><subject>Physical Sciences</subject><subject>Resonant frequencies</subject><subject>Safety</subject><subject>Science &amp; Technology</subject><subject>Soil resistance</subject><subject>Tapering</subject><subject>Technology</subject><subject>Thickness</subject><subject>Turbines</subject><subject>Wave resistance</subject><subject>Wind turbines</subject><issn>0253-4827</issn><issn>1573-2754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkE2LFDEQhoMoOK7-AG8Bb0pr5aPzcZRx_YBFL3oO6Uz1mmUmGZNuZ_rfm6EX9yR4qqJ43qLqIeQlg7cMQL-rDKQRHXDouOKyM4_IhvVadFz38jHZAO9FJw3XT8mzWu8AQGopN-TrhyX5QwzUJ79faqw0j_QU045OcxliQjrlExZapzKHNsJKY6IhH457PNMc0CeK6XcsOR0wTc_Jk9HvK764r1fkx8fr79vP3c23T1-272-6IHo2dUEaZoNiOwXKqiCEVNaOvRkss6i5FcoEBUwG3BmvtORG6yEwPjAMrVhxRV6ve08-jT7durs8l_ZBdctSzz_3Z4e8uQANwBv8aoWPJf-asU4PNJfMGmWNuFBspULJtRYc3bHEgy-LY-Aujt3q2LW97uLYmZYx92fgkMcaIqaAf3NNci-AWaZaB3wbJz_FnLZ5TlOLvvn_aKP5StdGpFssDy_8-7o_dRuelw</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Liu, Guanzhong</creator><creator>Guo, Xingming</creator><creator>Zhu, Li</creator><general>Shanghai University</general><general>Shanghai Univ</general><general>Springer Nature B.V</general><general>Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, School of Mechanics and Engineering Science,Shanghai University, Shanghai 200072, China%School of Mathematics and Computational Sciences, Xiangtan University,Xiangtan 411105, Hunan Province, China</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20200701</creationdate><title>Dynamic analysis of wind turbine tower structures in complex ocean environment</title><author>Liu, Guanzhong ; Guo, Xingming ; Zhu, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-c4819c61d60696c334699f58b919e729368c6014ced8a6742877bc12b1ecc1293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Classical Mechanics</topic><topic>Diameters</topic><topic>Dynamic response</topic><topic>Fluid- and Aerodynamics</topic><topic>Galerkin method</topic><topic>Marine environment</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics, Applied</topic><topic>Mechanics</topic><topic>Offshore</topic><topic>Offshore structures</topic><topic>Partial Differential Equations</topic><topic>Physical Sciences</topic><topic>Resonant frequencies</topic><topic>Safety</topic><topic>Science &amp; Technology</topic><topic>Soil resistance</topic><topic>Tapering</topic><topic>Technology</topic><topic>Thickness</topic><topic>Turbines</topic><topic>Wave resistance</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Guanzhong</creatorcontrib><creatorcontrib>Guo, Xingming</creatorcontrib><creatorcontrib>Zhu, Li</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Guanzhong</au><au>Guo, Xingming</au><au>Zhu, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic analysis of wind turbine tower structures in complex ocean environment</atitle><jtitle>Applied mathematics and mechanics</jtitle><stitle>Appl. Math. Mech.-Engl. Ed</stitle><stitle>APPL MATH MECH-ENGL</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>41</volume><issue>7</issue><spage>999</spage><epage>1010</epage><pages>999-1010</pages><issn>0253-4827</issn><eissn>1573-2754</eissn><abstract>Studying and analyzing the dynamic behavior of offshore wind turbines are of great importance to ensure the safety and improve the efficiency of such expensive equipments. In this work, a tapered beam model is proposed to investigate the dynamic response of an offshore wind turbine tower on the monopile foundation assembled with rotating blades in the complex ocean environment. Several environment factors like wind, wave, current, and soil resistance are taken into account. The proposed model is analytically solved with the Galerkin method. Based on the numerical results, the effects of various structure parameters including the taper angle, the height and thickness of the tower, the depth, and the diameter and the cement filler of the monopile on the fundamental natural frequency of the wind turbine tower system are investigated in detail. It is found that the fundamental natural frequency decreases with the increase in the taper angle and the height and thickness of the tower, and increases with the increase in the diameter of the monopile. Moreover, filling cement into the monopile can effectively improve the fundamental natural frequency of the wind turbine tower system, but there is a critical value of the amount of cement maximizing the property of the monopile. This research may be helpful in the design and safety evaluation of offshore wind turbines.</abstract><cop>Shanghai</cop><pub>Shanghai University</pub><doi>10.1007/s10483-020-2624-8</doi><tpages>12</tpages><edition>English ed.</edition></addata></record>
fulltext fulltext
identifier ISSN: 0253-4827
ispartof Applied mathematics and mechanics, 2020-07, Vol.41 (7), p.999-1010
issn 0253-4827
1573-2754
language eng
recordid cdi_wanfang_journals_yysxhlx_e202007002
source SpringerLink Journals; Alma/SFX Local Collection
subjects Applications of Mathematics
Classical Mechanics
Diameters
Dynamic response
Fluid- and Aerodynamics
Galerkin method
Marine environment
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Mathematics, Applied
Mechanics
Offshore
Offshore structures
Partial Differential Equations
Physical Sciences
Resonant frequencies
Safety
Science & Technology
Soil resistance
Tapering
Technology
Thickness
Turbines
Wave resistance
Wind turbines
title Dynamic analysis of wind turbine tower structures in complex ocean environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T09%3A44%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20analysis%20of%20wind%20turbine%20tower%20structures%20in%20complex%20ocean%20environment&rft.jtitle=Applied%20mathematics%20and%20mechanics&rft.au=Liu,%20Guanzhong&rft.date=2020-07-01&rft.volume=41&rft.issue=7&rft.spage=999&rft.epage=1010&rft.pages=999-1010&rft.issn=0253-4827&rft.eissn=1573-2754&rft_id=info:doi/10.1007/s10483-020-2624-8&rft_dat=%3Cwanfang_jour_cross%3Eyysxhlx_e202007002%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419869832&rft_id=info:pmid/&rft_wanfj_id=yysxhlx_e202007002&rfr_iscdi=true