Assessment of force models on finite-sized particles at finite Reynolds numbers

Finite-sized inertial spherical particles are fully-resolved with the immersed boundary projection method (IBPM) in the turbulent open-channel flow by direct numerical simulation (DNS). The accuracy of the particle surface force models is investigated in comparison with the total force obtained via...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and mechanics 2020-06, Vol.41 (6), p.953-966
Hauptverfasser: Li, Ruyang, Huang, Weixi, Zhao, Lihao, Xu, Chunxiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 966
container_issue 6
container_start_page 953
container_title Applied mathematics and mechanics
container_volume 41
creator Li, Ruyang
Huang, Weixi
Zhao, Lihao
Xu, Chunxiao
description Finite-sized inertial spherical particles are fully-resolved with the immersed boundary projection method (IBPM) in the turbulent open-channel flow by direct numerical simulation (DNS). The accuracy of the particle surface force models is investigated in comparison with the total force obtained via the fully-resolved method. The results show that the steady-state resistance only performs well in the streamwise direction, while the fluid acceleration force, the added-mass force, and the shear-induced Saffman lift can effectively compensate for the large-amplitude and high-frequency characteristics of the particle surface forces, especially for the wall-normal and spanwise components. The modified steady-state resistance with the correction effects of the acceleration and the fluid shear can better represent the overall forces imposed on the particles, and it is a preferable choice of the surface force model in the Lagrangian point-particle method.
doi_str_mv 10.1007/s10483-020-2621-9
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_yysxhlx_e202006009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>yysxhlx_e202006009</wanfj_id><sourcerecordid>yysxhlx_e202006009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-2606993da7c7feede7c08b5d6283dfbe37babe7e6a30c46e5a2a81c29f40a3093</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLcFb0J09iPZ5FiKX1AQRM_LJpmtKemm7qRo_fWmRujJ08DMM88ML2OXAm4EgLklATpXCUhIZCZFUhyxiUiNSqRJ9TGbgExVonNpTtkZ0QoAtNF6wp5nREi0xtDzznPfxQr5uquxJd4F7pvQ9JhQ840137jYN1WLxF3_N-EvuAtdWxMP23WJkc7ZiXct4cVfnbK3-7vX-WOyeH54ms8WSaVS0Q8_QlYUqnamMh6xRlNBXqZ1JnNV-xKVKV2JBjOnoNIZpk66XFSy8BqGVqGm7Hr0frrgXVjaVbeNYbhodzv6em-_LMohDMjgF74a4U3sPrZI_YGWGvI0hcyogRIjVcWOKKK3m9isXdxZAXYfsh1DtoPX7kO2e7Mcd2hgwxLjwfz_0g8MCX-d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408550673</pqid></control><display><type>article</type><title>Assessment of force models on finite-sized particles at finite Reynolds numbers</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Li, Ruyang ; Huang, Weixi ; Zhao, Lihao ; Xu, Chunxiao</creator><creatorcontrib>Li, Ruyang ; Huang, Weixi ; Zhao, Lihao ; Xu, Chunxiao</creatorcontrib><description>Finite-sized inertial spherical particles are fully-resolved with the immersed boundary projection method (IBPM) in the turbulent open-channel flow by direct numerical simulation (DNS). The accuracy of the particle surface force models is investigated in comparison with the total force obtained via the fully-resolved method. The results show that the steady-state resistance only performs well in the streamwise direction, while the fluid acceleration force, the added-mass force, and the shear-induced Saffman lift can effectively compensate for the large-amplitude and high-frequency characteristics of the particle surface forces, especially for the wall-normal and spanwise components. The modified steady-state resistance with the correction effects of the acceleration and the fluid shear can better represent the overall forces imposed on the particles, and it is a preferable choice of the surface force model in the Lagrangian point-particle method.</description><edition>English ed.</edition><identifier>ISSN: 0253-4827</identifier><identifier>EISSN: 1573-2754</identifier><identifier>DOI: 10.1007/s10483-020-2621-9</identifier><language>eng</language><publisher>Shanghai: Shanghai University</publisher><subject>Applications of Mathematics ; Classical Mechanics ; Computational fluid dynamics ; Computer simulation ; Direct numerical simulation ; Fluid flow ; Fluid- and Aerodynamics ; Lagrangian equilibrium points ; Mathematical Modeling and Industrial Mathematics ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Model accuracy ; Open channel flow ; Partial Differential Equations ; Reynolds number ; Steady state ; Turbulent flow</subject><ispartof>Applied mathematics and mechanics, 2020-06, Vol.41 (6), p.953-966</ispartof><rights>Shanghai University and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Shanghai University and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-2606993da7c7feede7c08b5d6283dfbe37babe7e6a30c46e5a2a81c29f40a3093</citedby><cites>FETCH-LOGICAL-c351t-2606993da7c7feede7c08b5d6283dfbe37babe7e6a30c46e5a2a81c29f40a3093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/yysxhlx-e/yysxhlx-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10483-020-2621-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10483-020-2621-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, Ruyang</creatorcontrib><creatorcontrib>Huang, Weixi</creatorcontrib><creatorcontrib>Zhao, Lihao</creatorcontrib><creatorcontrib>Xu, Chunxiao</creatorcontrib><title>Assessment of force models on finite-sized particles at finite Reynolds numbers</title><title>Applied mathematics and mechanics</title><addtitle>Appl. Math. Mech.-Engl. Ed</addtitle><description>Finite-sized inertial spherical particles are fully-resolved with the immersed boundary projection method (IBPM) in the turbulent open-channel flow by direct numerical simulation (DNS). The accuracy of the particle surface force models is investigated in comparison with the total force obtained via the fully-resolved method. The results show that the steady-state resistance only performs well in the streamwise direction, while the fluid acceleration force, the added-mass force, and the shear-induced Saffman lift can effectively compensate for the large-amplitude and high-frequency characteristics of the particle surface forces, especially for the wall-normal and spanwise components. The modified steady-state resistance with the correction effects of the acceleration and the fluid shear can better represent the overall forces imposed on the particles, and it is a preferable choice of the surface force model in the Lagrangian point-particle method.</description><subject>Applications of Mathematics</subject><subject>Classical Mechanics</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Direct numerical simulation</subject><subject>Fluid flow</subject><subject>Fluid- and Aerodynamics</subject><subject>Lagrangian equilibrium points</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Model accuracy</subject><subject>Open channel flow</subject><subject>Partial Differential Equations</subject><subject>Reynolds number</subject><subject>Steady state</subject><subject>Turbulent flow</subject><issn>0253-4827</issn><issn>1573-2754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFZ_gLcFb0J09iPZ5FiKX1AQRM_LJpmtKemm7qRo_fWmRujJ08DMM88ML2OXAm4EgLklATpXCUhIZCZFUhyxiUiNSqRJ9TGbgExVonNpTtkZ0QoAtNF6wp5nREi0xtDzznPfxQr5uquxJd4F7pvQ9JhQ840137jYN1WLxF3_N-EvuAtdWxMP23WJkc7ZiXct4cVfnbK3-7vX-WOyeH54ms8WSaVS0Q8_QlYUqnamMh6xRlNBXqZ1JnNV-xKVKV2JBjOnoNIZpk66XFSy8BqGVqGm7Hr0frrgXVjaVbeNYbhodzv6em-_LMohDMjgF74a4U3sPrZI_YGWGvI0hcyogRIjVcWOKKK3m9isXdxZAXYfsh1DtoPX7kO2e7Mcd2hgwxLjwfz_0g8MCX-d</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Li, Ruyang</creator><creator>Huang, Weixi</creator><creator>Zhao, Lihao</creator><creator>Xu, Chunxiao</creator><general>Shanghai University</general><general>Springer Nature B.V</general><general>Applied Mechanics Laboratory (AML), Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20200601</creationdate><title>Assessment of force models on finite-sized particles at finite Reynolds numbers</title><author>Li, Ruyang ; Huang, Weixi ; Zhao, Lihao ; Xu, Chunxiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-2606993da7c7feede7c08b5d6283dfbe37babe7e6a30c46e5a2a81c29f40a3093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Classical Mechanics</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Direct numerical simulation</topic><topic>Fluid flow</topic><topic>Fluid- and Aerodynamics</topic><topic>Lagrangian equilibrium points</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Model accuracy</topic><topic>Open channel flow</topic><topic>Partial Differential Equations</topic><topic>Reynolds number</topic><topic>Steady state</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ruyang</creatorcontrib><creatorcontrib>Huang, Weixi</creatorcontrib><creatorcontrib>Zhao, Lihao</creatorcontrib><creatorcontrib>Xu, Chunxiao</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ruyang</au><au>Huang, Weixi</au><au>Zhao, Lihao</au><au>Xu, Chunxiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of force models on finite-sized particles at finite Reynolds numbers</atitle><jtitle>Applied mathematics and mechanics</jtitle><stitle>Appl. Math. Mech.-Engl. Ed</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>41</volume><issue>6</issue><spage>953</spage><epage>966</epage><pages>953-966</pages><issn>0253-4827</issn><eissn>1573-2754</eissn><abstract>Finite-sized inertial spherical particles are fully-resolved with the immersed boundary projection method (IBPM) in the turbulent open-channel flow by direct numerical simulation (DNS). The accuracy of the particle surface force models is investigated in comparison with the total force obtained via the fully-resolved method. The results show that the steady-state resistance only performs well in the streamwise direction, while the fluid acceleration force, the added-mass force, and the shear-induced Saffman lift can effectively compensate for the large-amplitude and high-frequency characteristics of the particle surface forces, especially for the wall-normal and spanwise components. The modified steady-state resistance with the correction effects of the acceleration and the fluid shear can better represent the overall forces imposed on the particles, and it is a preferable choice of the surface force model in the Lagrangian point-particle method.</abstract><cop>Shanghai</cop><pub>Shanghai University</pub><doi>10.1007/s10483-020-2621-9</doi><tpages>14</tpages><edition>English ed.</edition></addata></record>
fulltext fulltext
identifier ISSN: 0253-4827
ispartof Applied mathematics and mechanics, 2020-06, Vol.41 (6), p.953-966
issn 0253-4827
1573-2754
language eng
recordid cdi_wanfang_journals_yysxhlx_e202006009
source SpringerNature Journals; Alma/SFX Local Collection
subjects Applications of Mathematics
Classical Mechanics
Computational fluid dynamics
Computer simulation
Direct numerical simulation
Fluid flow
Fluid- and Aerodynamics
Lagrangian equilibrium points
Mathematical Modeling and Industrial Mathematics
Mathematical models
Mathematics
Mathematics and Statistics
Model accuracy
Open channel flow
Partial Differential Equations
Reynolds number
Steady state
Turbulent flow
title Assessment of force models on finite-sized particles at finite Reynolds numbers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A42%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20force%20models%20on%20finite-sized%20particles%20at%20finite%20Reynolds%20numbers&rft.jtitle=Applied%20mathematics%20and%20mechanics&rft.au=Li,%20Ruyang&rft.date=2020-06-01&rft.volume=41&rft.issue=6&rft.spage=953&rft.epage=966&rft.pages=953-966&rft.issn=0253-4827&rft.eissn=1573-2754&rft_id=info:doi/10.1007/s10483-020-2621-9&rft_dat=%3Cwanfang_jour_proqu%3Eyysxhlx_e202006009%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2408550673&rft_id=info:pmid/&rft_wanfj_id=yysxhlx_e202006009&rfr_iscdi=true