Assessment of force models on finite-sized particles at finite Reynolds numbers
Finite-sized inertial spherical particles are fully-resolved with the immersed boundary projection method (IBPM) in the turbulent open-channel flow by direct numerical simulation (DNS). The accuracy of the particle surface force models is investigated in comparison with the total force obtained via...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and mechanics 2020-06, Vol.41 (6), p.953-966 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 966 |
---|---|
container_issue | 6 |
container_start_page | 953 |
container_title | Applied mathematics and mechanics |
container_volume | 41 |
creator | Li, Ruyang Huang, Weixi Zhao, Lihao Xu, Chunxiao |
description | Finite-sized inertial spherical particles are fully-resolved with the immersed boundary projection method (IBPM) in the turbulent open-channel flow by direct numerical simulation (DNS). The accuracy of the particle surface force models is investigated in comparison with the total force obtained via the fully-resolved method. The results show that the steady-state resistance only performs well in the streamwise direction, while the fluid acceleration force, the added-mass force, and the shear-induced Saffman lift can effectively compensate for the large-amplitude and high-frequency characteristics of the particle surface forces, especially for the wall-normal and spanwise components. The modified steady-state resistance with the correction effects of the acceleration and the fluid shear can better represent the overall forces imposed on the particles, and it is a preferable choice of the surface force model in the Lagrangian point-particle method. |
doi_str_mv | 10.1007/s10483-020-2621-9 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_yysxhlx_e202006009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>yysxhlx_e202006009</wanfj_id><sourcerecordid>yysxhlx_e202006009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-2606993da7c7feede7c08b5d6283dfbe37babe7e6a30c46e5a2a81c29f40a3093</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLcFb0J09iPZ5FiKX1AQRM_LJpmtKemm7qRo_fWmRujJ08DMM88ML2OXAm4EgLklATpXCUhIZCZFUhyxiUiNSqRJ9TGbgExVonNpTtkZ0QoAtNF6wp5nREi0xtDzznPfxQr5uquxJd4F7pvQ9JhQ840137jYN1WLxF3_N-EvuAtdWxMP23WJkc7ZiXct4cVfnbK3-7vX-WOyeH54ms8WSaVS0Q8_QlYUqnamMh6xRlNBXqZ1JnNV-xKVKV2JBjOnoNIZpk66XFSy8BqGVqGm7Hr0frrgXVjaVbeNYbhodzv6em-_LMohDMjgF74a4U3sPrZI_YGWGvI0hcyogRIjVcWOKKK3m9isXdxZAXYfsh1DtoPX7kO2e7Mcd2hgwxLjwfz_0g8MCX-d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408550673</pqid></control><display><type>article</type><title>Assessment of force models on finite-sized particles at finite Reynolds numbers</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Li, Ruyang ; Huang, Weixi ; Zhao, Lihao ; Xu, Chunxiao</creator><creatorcontrib>Li, Ruyang ; Huang, Weixi ; Zhao, Lihao ; Xu, Chunxiao</creatorcontrib><description>Finite-sized inertial spherical particles are fully-resolved with the immersed boundary projection method (IBPM) in the turbulent open-channel flow by direct numerical simulation (DNS). The accuracy of the particle surface force models is investigated in comparison with the total force obtained via the fully-resolved method. The results show that the steady-state resistance only performs well in the streamwise direction, while the fluid acceleration force, the added-mass force, and the shear-induced Saffman lift can effectively compensate for the large-amplitude and high-frequency characteristics of the particle surface forces, especially for the wall-normal and spanwise components. The modified steady-state resistance with the correction effects of the acceleration and the fluid shear can better represent the overall forces imposed on the particles, and it is a preferable choice of the surface force model in the Lagrangian point-particle method.</description><edition>English ed.</edition><identifier>ISSN: 0253-4827</identifier><identifier>EISSN: 1573-2754</identifier><identifier>DOI: 10.1007/s10483-020-2621-9</identifier><language>eng</language><publisher>Shanghai: Shanghai University</publisher><subject>Applications of Mathematics ; Classical Mechanics ; Computational fluid dynamics ; Computer simulation ; Direct numerical simulation ; Fluid flow ; Fluid- and Aerodynamics ; Lagrangian equilibrium points ; Mathematical Modeling and Industrial Mathematics ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Model accuracy ; Open channel flow ; Partial Differential Equations ; Reynolds number ; Steady state ; Turbulent flow</subject><ispartof>Applied mathematics and mechanics, 2020-06, Vol.41 (6), p.953-966</ispartof><rights>Shanghai University and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Shanghai University and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-2606993da7c7feede7c08b5d6283dfbe37babe7e6a30c46e5a2a81c29f40a3093</citedby><cites>FETCH-LOGICAL-c351t-2606993da7c7feede7c08b5d6283dfbe37babe7e6a30c46e5a2a81c29f40a3093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/yysxhlx-e/yysxhlx-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10483-020-2621-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10483-020-2621-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, Ruyang</creatorcontrib><creatorcontrib>Huang, Weixi</creatorcontrib><creatorcontrib>Zhao, Lihao</creatorcontrib><creatorcontrib>Xu, Chunxiao</creatorcontrib><title>Assessment of force models on finite-sized particles at finite Reynolds numbers</title><title>Applied mathematics and mechanics</title><addtitle>Appl. Math. Mech.-Engl. Ed</addtitle><description>Finite-sized inertial spherical particles are fully-resolved with the immersed boundary projection method (IBPM) in the turbulent open-channel flow by direct numerical simulation (DNS). The accuracy of the particle surface force models is investigated in comparison with the total force obtained via the fully-resolved method. The results show that the steady-state resistance only performs well in the streamwise direction, while the fluid acceleration force, the added-mass force, and the shear-induced Saffman lift can effectively compensate for the large-amplitude and high-frequency characteristics of the particle surface forces, especially for the wall-normal and spanwise components. The modified steady-state resistance with the correction effects of the acceleration and the fluid shear can better represent the overall forces imposed on the particles, and it is a preferable choice of the surface force model in the Lagrangian point-particle method.</description><subject>Applications of Mathematics</subject><subject>Classical Mechanics</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Direct numerical simulation</subject><subject>Fluid flow</subject><subject>Fluid- and Aerodynamics</subject><subject>Lagrangian equilibrium points</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Model accuracy</subject><subject>Open channel flow</subject><subject>Partial Differential Equations</subject><subject>Reynolds number</subject><subject>Steady state</subject><subject>Turbulent flow</subject><issn>0253-4827</issn><issn>1573-2754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFZ_gLcFb0J09iPZ5FiKX1AQRM_LJpmtKemm7qRo_fWmRujJ08DMM88ML2OXAm4EgLklATpXCUhIZCZFUhyxiUiNSqRJ9TGbgExVonNpTtkZ0QoAtNF6wp5nREi0xtDzznPfxQr5uquxJd4F7pvQ9JhQ840137jYN1WLxF3_N-EvuAtdWxMP23WJkc7ZiXct4cVfnbK3-7vX-WOyeH54ms8WSaVS0Q8_QlYUqnamMh6xRlNBXqZ1JnNV-xKVKV2JBjOnoNIZpk66XFSy8BqGVqGm7Hr0frrgXVjaVbeNYbhodzv6em-_LMohDMjgF74a4U3sPrZI_YGWGvI0hcyogRIjVcWOKKK3m9isXdxZAXYfsh1DtoPX7kO2e7Mcd2hgwxLjwfz_0g8MCX-d</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Li, Ruyang</creator><creator>Huang, Weixi</creator><creator>Zhao, Lihao</creator><creator>Xu, Chunxiao</creator><general>Shanghai University</general><general>Springer Nature B.V</general><general>Applied Mechanics Laboratory (AML), Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20200601</creationdate><title>Assessment of force models on finite-sized particles at finite Reynolds numbers</title><author>Li, Ruyang ; Huang, Weixi ; Zhao, Lihao ; Xu, Chunxiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-2606993da7c7feede7c08b5d6283dfbe37babe7e6a30c46e5a2a81c29f40a3093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Classical Mechanics</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Direct numerical simulation</topic><topic>Fluid flow</topic><topic>Fluid- and Aerodynamics</topic><topic>Lagrangian equilibrium points</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Model accuracy</topic><topic>Open channel flow</topic><topic>Partial Differential Equations</topic><topic>Reynolds number</topic><topic>Steady state</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ruyang</creatorcontrib><creatorcontrib>Huang, Weixi</creatorcontrib><creatorcontrib>Zhao, Lihao</creatorcontrib><creatorcontrib>Xu, Chunxiao</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ruyang</au><au>Huang, Weixi</au><au>Zhao, Lihao</au><au>Xu, Chunxiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of force models on finite-sized particles at finite Reynolds numbers</atitle><jtitle>Applied mathematics and mechanics</jtitle><stitle>Appl. Math. Mech.-Engl. Ed</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>41</volume><issue>6</issue><spage>953</spage><epage>966</epage><pages>953-966</pages><issn>0253-4827</issn><eissn>1573-2754</eissn><abstract>Finite-sized inertial spherical particles are fully-resolved with the immersed boundary projection method (IBPM) in the turbulent open-channel flow by direct numerical simulation (DNS). The accuracy of the particle surface force models is investigated in comparison with the total force obtained via the fully-resolved method. The results show that the steady-state resistance only performs well in the streamwise direction, while the fluid acceleration force, the added-mass force, and the shear-induced Saffman lift can effectively compensate for the large-amplitude and high-frequency characteristics of the particle surface forces, especially for the wall-normal and spanwise components. The modified steady-state resistance with the correction effects of the acceleration and the fluid shear can better represent the overall forces imposed on the particles, and it is a preferable choice of the surface force model in the Lagrangian point-particle method.</abstract><cop>Shanghai</cop><pub>Shanghai University</pub><doi>10.1007/s10483-020-2621-9</doi><tpages>14</tpages><edition>English ed.</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-4827 |
ispartof | Applied mathematics and mechanics, 2020-06, Vol.41 (6), p.953-966 |
issn | 0253-4827 1573-2754 |
language | eng |
recordid | cdi_wanfang_journals_yysxhlx_e202006009 |
source | SpringerNature Journals; Alma/SFX Local Collection |
subjects | Applications of Mathematics Classical Mechanics Computational fluid dynamics Computer simulation Direct numerical simulation Fluid flow Fluid- and Aerodynamics Lagrangian equilibrium points Mathematical Modeling and Industrial Mathematics Mathematical models Mathematics Mathematics and Statistics Model accuracy Open channel flow Partial Differential Equations Reynolds number Steady state Turbulent flow |
title | Assessment of force models on finite-sized particles at finite Reynolds numbers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A42%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20force%20models%20on%20finite-sized%20particles%20at%20finite%20Reynolds%20numbers&rft.jtitle=Applied%20mathematics%20and%20mechanics&rft.au=Li,%20Ruyang&rft.date=2020-06-01&rft.volume=41&rft.issue=6&rft.spage=953&rft.epage=966&rft.pages=953-966&rft.issn=0253-4827&rft.eissn=1573-2754&rft_id=info:doi/10.1007/s10483-020-2621-9&rft_dat=%3Cwanfang_jour_proqu%3Eyysxhlx_e202006009%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2408550673&rft_id=info:pmid/&rft_wanfj_id=yysxhlx_e202006009&rfr_iscdi=true |