A numerical investigation of CO2 dilution on the thermochemical characteristics of a swirl stabilized diffusion flame
The turbulent combustion flow modeling is performed to study the effects of CO 2 addition to the fuel and oxidizer streams on the thermochemical characteristics of a swirl stabilized diffusion flame. A flamelet approach along with three well-known turbulence models is utilized to model the turbulent...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and mechanics 2020-02, Vol.41 (2), p.327-348 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 348 |
---|---|
container_issue | 2 |
container_start_page | 327 |
container_title | Applied mathematics and mechanics |
container_volume | 41 |
creator | Vakilipour, S. Tohidi, Y. Al-Zaili, J. Riazi, R. |
description | The turbulent combustion flow modeling is performed to study the effects of CO
2
addition to the fuel and oxidizer streams on the thermochemical characteristics of a swirl stabilized diffusion flame. A flamelet approach along with three well-known turbulence models is utilized to model the turbulent combustion flow field. The
k
-
ω
shear stress transport (SST) model shows the best agreement with the experimental measurements compared with other models. Therefore, the
k
-
ω
SST model is used to study the effects of CO
2
dilution on the flame structure and strength, temperature distribution, and CO concentration. To determine the chemical effects of CO
2
dilution, a fictitious species is replaced with the regular CO
2
in both the fuel stream and the oxidizer stream. The results indicate that the flame temperature decreases when CO
2
is added to either the fuel or the oxidizer stream. The flame length reduction is observed at all levels of CO
2
dilution. The H radical concentration indicating the flame strength decreases, following by the thermochemical effects of CO
2
dilution processes. In comparison with the fictitious species dilution, the chemical effects of CO
2
addition enhance the CO mass fraction. The numerical simulations show that when the dilution level is higher, the rate of the flame length reduction is more significant at low swirl numbers. |
doi_str_mv | 10.1007/s10483-020-2571-6 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_yysxhlx_e202002008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>yysxhlx_e202002008</wanfj_id><sourcerecordid>yysxhlx_e202002008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-d478410ebaa955ec59336e5e1ea1a72ce7d01afd647fe9bbe95fd46f5a269f503</originalsourceid><addsrcrecordid>eNp1kctKxDAUhoMoOI4-gLuCO6GaazNdyuANBDe6DmfSk5kMvYxJq45Pb2oFV0JCCPzfd-D8hJwzesUo1deRUbkQOeU050qzvDggM6a0yLlW8pDMKFcilwuuj8lJjFtKqdRSzshwk7VDg8FbqDPfvmPs_Rp637VZ57LlM88qXw_Tv836DY43NJ3dYPPD2A0EsH0yJNLGkYIsfvhQZ7GHla_9F1ZJ4twQR4urocFTcuSgjnj2-87J693ty_Ihf3q-f1zePOVWlLLPK6kXklFcAZRKoVWlEAUqZAgMNLeoK8rAVYXUDsvVCkvlKlk4BbwonaJiTi4n7we0Dtq12XZDaNNEs9_Hz039aZCnlY1nkcIXU3gXurchLeIvzYUUvJCUsZRiU8qGLsaAzuyCbyDsDaNmrMJMVZgkNWMVpkgMn5iYsu0aw5_5f-gbcV-NzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343264011</pqid></control><display><type>article</type><title>A numerical investigation of CO2 dilution on the thermochemical characteristics of a swirl stabilized diffusion flame</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Vakilipour, S. ; Tohidi, Y. ; Al-Zaili, J. ; Riazi, R.</creator><creatorcontrib>Vakilipour, S. ; Tohidi, Y. ; Al-Zaili, J. ; Riazi, R.</creatorcontrib><description>The turbulent combustion flow modeling is performed to study the effects of CO
2
addition to the fuel and oxidizer streams on the thermochemical characteristics of a swirl stabilized diffusion flame. A flamelet approach along with three well-known turbulence models is utilized to model the turbulent combustion flow field. The
k
-
ω
shear stress transport (SST) model shows the best agreement with the experimental measurements compared with other models. Therefore, the
k
-
ω
SST model is used to study the effects of CO
2
dilution on the flame structure and strength, temperature distribution, and CO concentration. To determine the chemical effects of CO
2
dilution, a fictitious species is replaced with the regular CO
2
in both the fuel stream and the oxidizer stream. The results indicate that the flame temperature decreases when CO
2
is added to either the fuel or the oxidizer stream. The flame length reduction is observed at all levels of CO
2
dilution. The H radical concentration indicating the flame strength decreases, following by the thermochemical effects of CO
2
dilution processes. In comparison with the fictitious species dilution, the chemical effects of CO
2
addition enhance the CO mass fraction. The numerical simulations show that when the dilution level is higher, the rate of the flame length reduction is more significant at low swirl numbers.</description><edition>English ed.</edition><identifier>ISSN: 0253-4827</identifier><identifier>EISSN: 1573-2754</identifier><identifier>DOI: 10.1007/s10483-020-2571-6</identifier><language>eng</language><publisher>Shanghai: Shanghai University</publisher><subject>Applications of Mathematics ; Carbon dioxide ; Carbon monoxide ; Chemical effects ; Classical Mechanics ; Computational fluid dynamics ; Computer simulation ; Dilution ; Flame structure ; Flame temperature ; Fluid- and Aerodynamics ; Fuels ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Organic chemistry ; Partial Differential Equations ; Reduction ; Shear stress ; Temperature distribution ; Turbulence models ; Turbulent combustion ; Turbulent flow</subject><ispartof>Applied mathematics and mechanics, 2020-02, Vol.41 (2), p.327-348</ispartof><rights>Shanghai University and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>2019© Shanghai University and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-d478410ebaa955ec59336e5e1ea1a72ce7d01afd647fe9bbe95fd46f5a269f503</citedby><cites>FETCH-LOGICAL-c394t-d478410ebaa955ec59336e5e1ea1a72ce7d01afd647fe9bbe95fd46f5a269f503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/yysxhlx-e/yysxhlx-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10483-020-2571-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10483-020-2571-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Vakilipour, S.</creatorcontrib><creatorcontrib>Tohidi, Y.</creatorcontrib><creatorcontrib>Al-Zaili, J.</creatorcontrib><creatorcontrib>Riazi, R.</creatorcontrib><title>A numerical investigation of CO2 dilution on the thermochemical characteristics of a swirl stabilized diffusion flame</title><title>Applied mathematics and mechanics</title><addtitle>Appl. Math. Mech.-Engl. Ed</addtitle><description>The turbulent combustion flow modeling is performed to study the effects of CO
2
addition to the fuel and oxidizer streams on the thermochemical characteristics of a swirl stabilized diffusion flame. A flamelet approach along with three well-known turbulence models is utilized to model the turbulent combustion flow field. The
k
-
ω
shear stress transport (SST) model shows the best agreement with the experimental measurements compared with other models. Therefore, the
k
-
ω
SST model is used to study the effects of CO
2
dilution on the flame structure and strength, temperature distribution, and CO concentration. To determine the chemical effects of CO
2
dilution, a fictitious species is replaced with the regular CO
2
in both the fuel stream and the oxidizer stream. The results indicate that the flame temperature decreases when CO
2
is added to either the fuel or the oxidizer stream. The flame length reduction is observed at all levels of CO
2
dilution. The H radical concentration indicating the flame strength decreases, following by the thermochemical effects of CO
2
dilution processes. In comparison with the fictitious species dilution, the chemical effects of CO
2
addition enhance the CO mass fraction. The numerical simulations show that when the dilution level is higher, the rate of the flame length reduction is more significant at low swirl numbers.</description><subject>Applications of Mathematics</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Chemical effects</subject><subject>Classical Mechanics</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Dilution</subject><subject>Flame structure</subject><subject>Flame temperature</subject><subject>Fluid- and Aerodynamics</subject><subject>Fuels</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Organic chemistry</subject><subject>Partial Differential Equations</subject><subject>Reduction</subject><subject>Shear stress</subject><subject>Temperature distribution</subject><subject>Turbulence models</subject><subject>Turbulent combustion</subject><subject>Turbulent flow</subject><issn>0253-4827</issn><issn>1573-2754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kctKxDAUhoMoOI4-gLuCO6GaazNdyuANBDe6DmfSk5kMvYxJq45Pb2oFV0JCCPzfd-D8hJwzesUo1deRUbkQOeU050qzvDggM6a0yLlW8pDMKFcilwuuj8lJjFtKqdRSzshwk7VDg8FbqDPfvmPs_Rp637VZ57LlM88qXw_Tv836DY43NJ3dYPPD2A0EsH0yJNLGkYIsfvhQZ7GHla_9F1ZJ4twQR4urocFTcuSgjnj2-87J693ty_Ihf3q-f1zePOVWlLLPK6kXklFcAZRKoVWlEAUqZAgMNLeoK8rAVYXUDsvVCkvlKlk4BbwonaJiTi4n7we0Dtq12XZDaNNEs9_Hz039aZCnlY1nkcIXU3gXurchLeIvzYUUvJCUsZRiU8qGLsaAzuyCbyDsDaNmrMJMVZgkNWMVpkgMn5iYsu0aw5_5f-gbcV-NzA</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Vakilipour, S.</creator><creator>Tohidi, Y.</creator><creator>Al-Zaili, J.</creator><creator>Riazi, R.</creator><general>Shanghai University</general><general>Springer Nature B.V</general><general>Faculty of New Sciences and Technologies, University of Tehran,North Kargar Street, Tehran, Iran</general><general>Department of Mechanical Engineering, University of Manitoba,Winnipeg, MB R3T 5V6, Canada%Faculty of New Sciences and Technologies, University of Tehran,North Kargar Street, Tehran, Iran%Department of Mechanical Engineering & Aeronautics, City, University of London,Northampton Square, London EC1V 0HB, U.K</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20200201</creationdate><title>A numerical investigation of CO2 dilution on the thermochemical characteristics of a swirl stabilized diffusion flame</title><author>Vakilipour, S. ; Tohidi, Y. ; Al-Zaili, J. ; Riazi, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-d478410ebaa955ec59336e5e1ea1a72ce7d01afd647fe9bbe95fd46f5a269f503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Chemical effects</topic><topic>Classical Mechanics</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Dilution</topic><topic>Flame structure</topic><topic>Flame temperature</topic><topic>Fluid- and Aerodynamics</topic><topic>Fuels</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Organic chemistry</topic><topic>Partial Differential Equations</topic><topic>Reduction</topic><topic>Shear stress</topic><topic>Temperature distribution</topic><topic>Turbulence models</topic><topic>Turbulent combustion</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vakilipour, S.</creatorcontrib><creatorcontrib>Tohidi, Y.</creatorcontrib><creatorcontrib>Al-Zaili, J.</creatorcontrib><creatorcontrib>Riazi, R.</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vakilipour, S.</au><au>Tohidi, Y.</au><au>Al-Zaili, J.</au><au>Riazi, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical investigation of CO2 dilution on the thermochemical characteristics of a swirl stabilized diffusion flame</atitle><jtitle>Applied mathematics and mechanics</jtitle><stitle>Appl. Math. Mech.-Engl. Ed</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>41</volume><issue>2</issue><spage>327</spage><epage>348</epage><pages>327-348</pages><issn>0253-4827</issn><eissn>1573-2754</eissn><abstract>The turbulent combustion flow modeling is performed to study the effects of CO
2
addition to the fuel and oxidizer streams on the thermochemical characteristics of a swirl stabilized diffusion flame. A flamelet approach along with three well-known turbulence models is utilized to model the turbulent combustion flow field. The
k
-
ω
shear stress transport (SST) model shows the best agreement with the experimental measurements compared with other models. Therefore, the
k
-
ω
SST model is used to study the effects of CO
2
dilution on the flame structure and strength, temperature distribution, and CO concentration. To determine the chemical effects of CO
2
dilution, a fictitious species is replaced with the regular CO
2
in both the fuel stream and the oxidizer stream. The results indicate that the flame temperature decreases when CO
2
is added to either the fuel or the oxidizer stream. The flame length reduction is observed at all levels of CO
2
dilution. The H radical concentration indicating the flame strength decreases, following by the thermochemical effects of CO
2
dilution processes. In comparison with the fictitious species dilution, the chemical effects of CO
2
addition enhance the CO mass fraction. The numerical simulations show that when the dilution level is higher, the rate of the flame length reduction is more significant at low swirl numbers.</abstract><cop>Shanghai</cop><pub>Shanghai University</pub><doi>10.1007/s10483-020-2571-6</doi><tpages>22</tpages><edition>English ed.</edition><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-4827 |
ispartof | Applied mathematics and mechanics, 2020-02, Vol.41 (2), p.327-348 |
issn | 0253-4827 1573-2754 |
language | eng |
recordid | cdi_wanfang_journals_yysxhlx_e202002008 |
source | SpringerNature Journals; Alma/SFX Local Collection |
subjects | Applications of Mathematics Carbon dioxide Carbon monoxide Chemical effects Classical Mechanics Computational fluid dynamics Computer simulation Dilution Flame structure Flame temperature Fluid- and Aerodynamics Fuels Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Organic chemistry Partial Differential Equations Reduction Shear stress Temperature distribution Turbulence models Turbulent combustion Turbulent flow |
title | A numerical investigation of CO2 dilution on the thermochemical characteristics of a swirl stabilized diffusion flame |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A42%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20investigation%20of%20CO2%20dilution%20on%20the%20thermochemical%20characteristics%20of%20a%20swirl%20stabilized%20diffusion%20flame&rft.jtitle=Applied%20mathematics%20and%20mechanics&rft.au=Vakilipour,%20S.&rft.date=2020-02-01&rft.volume=41&rft.issue=2&rft.spage=327&rft.epage=348&rft.pages=327-348&rft.issn=0253-4827&rft.eissn=1573-2754&rft_id=info:doi/10.1007/s10483-020-2571-6&rft_dat=%3Cwanfang_jour_proqu%3Eyysxhlx_e202002008%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343264011&rft_id=info:pmid/&rft_wanfj_id=yysxhlx_e202002008&rfr_iscdi=true |