Improvement for expansion of parabolized stability equation method in boundary layer stability analysis

An improved expansion of the parabolized stability equation (iEPSE) method is proposed for the accurate linear instability prediction in boundary layers. It is a local eigenvalue problem, and the streamwise wavenumber α and its streamwise gradient d α /d x are unknown variables. This eigenvalue prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and mechanics 2018-12, Vol.39 (12), p.1737-1754
Hauptverfasser: Han, Yufeng, Liu, Jianxin, Luo, Jisheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1754
container_issue 12
container_start_page 1737
container_title Applied mathematics and mechanics
container_volume 39
creator Han, Yufeng
Liu, Jianxin
Luo, Jisheng
description An improved expansion of the parabolized stability equation (iEPSE) method is proposed for the accurate linear instability prediction in boundary layers. It is a local eigenvalue problem, and the streamwise wavenumber α and its streamwise gradient d α /d x are unknown variables. This eigenvalue problem is solved for the eigenvalue d α /d x with an initial α , and the correction of α is performed with the conservation relation used in the PSE. The iEPSE is validated in several compressible and incompressible boundary layers. The computational results show that the prediction accuracy of the iEPSE is significantly higher than that of the ESPE, and it is in excellent agreement with the PSE which is regarded as the baseline for comparison. In addition, the unphysical multiple eigenmode problem in the EPSE is solved by using the iEPSE. As a local non-parallel stability analysis tool, the iEPSE has great potential application in the e N transition prediction in general three-dimensional boundary layers.
doi_str_mv 10.1007/s10483-019-2401-9
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_yysxhlx_e201812003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>yysxhlx_e201812003</wanfj_id><sourcerecordid>yysxhlx_e201812003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-54071dd129e77fbb6f584a029c3f1021d161604f546f452101b5c2d7c9b0ffa73</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqXwA9gssSEF3nPsuBlRxZdUiQVmy0nsNlVqFzuFhl-PqyDBwvSWc6_uO4RcItwggLyNCHyWZ4BlxjhgVh6RCQqZZ0wKfkwmwESe8RmTp-QsxjUAcMn5hCyfN9vgP8zGuJ5aH6jZb7WLrXfUW7rVQVe-a79MQ2Ovq7Zr-4Ga953uD8TG9Cvf0NbRyu9co8NAOz2Y8IfVTndDbOM5ObG6i-bi507J28P96_wpW7w8Ps_vFlmdC-wzwUFi0yArjZS2qgorZlwDK-vcIjBssMACuBW8sFwwBKxEzRpZlxVYq2U-Jddj76d2VrulWvtdSBuiGoa4X3V7ZRjgDBlAnuCrEU4K3ncm9r80w2SxEFBgonCk6uBjDMaqbWg36VmFoA7y1ShfJfnqIF-VKcPGTEysW5rw2_x_6Bvs94hR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2140165061</pqid></control><display><type>article</type><title>Improvement for expansion of parabolized stability equation method in boundary layer stability analysis</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Han, Yufeng ; Liu, Jianxin ; Luo, Jisheng</creator><creatorcontrib>Han, Yufeng ; Liu, Jianxin ; Luo, Jisheng</creatorcontrib><description>An improved expansion of the parabolized stability equation (iEPSE) method is proposed for the accurate linear instability prediction in boundary layers. It is a local eigenvalue problem, and the streamwise wavenumber α and its streamwise gradient d α /d x are unknown variables. This eigenvalue problem is solved for the eigenvalue d α /d x with an initial α , and the correction of α is performed with the conservation relation used in the PSE. The iEPSE is validated in several compressible and incompressible boundary layers. The computational results show that the prediction accuracy of the iEPSE is significantly higher than that of the ESPE, and it is in excellent agreement with the PSE which is regarded as the baseline for comparison. In addition, the unphysical multiple eigenmode problem in the EPSE is solved by using the iEPSE. As a local non-parallel stability analysis tool, the iEPSE has great potential application in the e N transition prediction in general three-dimensional boundary layers.</description><edition>English ed.</edition><identifier>ISSN: 0253-4827</identifier><identifier>EISSN: 1573-2754</identifier><identifier>DOI: 10.1007/s10483-019-2401-9</identifier><language>eng</language><publisher>Shanghai: Shanghai University</publisher><subject>Applications of Mathematics ; Boundary layer stability ; Boundary layer transition ; Classical Mechanics ; Compressibility ; Computational fluid dynamics ; Eigenvalues ; Fluid- and Aerodynamics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Parabolized stability equations ; Partial Differential Equations ; Stability ; Stability analysis ; Wavelengths</subject><ispartof>Applied mathematics and mechanics, 2018-12, Vol.39 (12), p.1737-1754</ispartof><rights>Shanghai University and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-54071dd129e77fbb6f584a029c3f1021d161604f546f452101b5c2d7c9b0ffa73</citedby><cites>FETCH-LOGICAL-c351t-54071dd129e77fbb6f584a029c3f1021d161604f546f452101b5c2d7c9b0ffa73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/yysxhlx-e/yysxhlx-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10483-019-2401-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10483-019-2401-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Han, Yufeng</creatorcontrib><creatorcontrib>Liu, Jianxin</creatorcontrib><creatorcontrib>Luo, Jisheng</creatorcontrib><title>Improvement for expansion of parabolized stability equation method in boundary layer stability analysis</title><title>Applied mathematics and mechanics</title><addtitle>Appl. Math. Mech.-Engl. Ed</addtitle><description>An improved expansion of the parabolized stability equation (iEPSE) method is proposed for the accurate linear instability prediction in boundary layers. It is a local eigenvalue problem, and the streamwise wavenumber α and its streamwise gradient d α /d x are unknown variables. This eigenvalue problem is solved for the eigenvalue d α /d x with an initial α , and the correction of α is performed with the conservation relation used in the PSE. The iEPSE is validated in several compressible and incompressible boundary layers. The computational results show that the prediction accuracy of the iEPSE is significantly higher than that of the ESPE, and it is in excellent agreement with the PSE which is regarded as the baseline for comparison. In addition, the unphysical multiple eigenmode problem in the EPSE is solved by using the iEPSE. As a local non-parallel stability analysis tool, the iEPSE has great potential application in the e N transition prediction in general three-dimensional boundary layers.</description><subject>Applications of Mathematics</subject><subject>Boundary layer stability</subject><subject>Boundary layer transition</subject><subject>Classical Mechanics</subject><subject>Compressibility</subject><subject>Computational fluid dynamics</subject><subject>Eigenvalues</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Parabolized stability equations</subject><subject>Partial Differential Equations</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Wavelengths</subject><issn>0253-4827</issn><issn>1573-2754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EEqXwA9gssSEF3nPsuBlRxZdUiQVmy0nsNlVqFzuFhl-PqyDBwvSWc6_uO4RcItwggLyNCHyWZ4BlxjhgVh6RCQqZZ0wKfkwmwESe8RmTp-QsxjUAcMn5hCyfN9vgP8zGuJ5aH6jZb7WLrXfUW7rVQVe-a79MQ2Ovq7Zr-4Ga953uD8TG9Cvf0NbRyu9co8NAOz2Y8IfVTndDbOM5ObG6i-bi507J28P96_wpW7w8Ps_vFlmdC-wzwUFi0yArjZS2qgorZlwDK-vcIjBssMACuBW8sFwwBKxEzRpZlxVYq2U-Jddj76d2VrulWvtdSBuiGoa4X3V7ZRjgDBlAnuCrEU4K3ncm9r80w2SxEFBgonCk6uBjDMaqbWg36VmFoA7y1ShfJfnqIF-VKcPGTEysW5rw2_x_6Bvs94hR</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Han, Yufeng</creator><creator>Liu, Jianxin</creator><creator>Luo, Jisheng</creator><general>Shanghai University</general><general>Springer Nature B.V</general><general>Department of Mechanics, Tianjin University, Tianjin 300072, China%Department of Mechanics, Tianjin University, Tianjin 300072, China</general><general>Tianjin Key Laboratory of Modern Engineering Mechanics, Tianjin 300072, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20181201</creationdate><title>Improvement for expansion of parabolized stability equation method in boundary layer stability analysis</title><author>Han, Yufeng ; Liu, Jianxin ; Luo, Jisheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-54071dd129e77fbb6f584a029c3f1021d161604f546f452101b5c2d7c9b0ffa73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications of Mathematics</topic><topic>Boundary layer stability</topic><topic>Boundary layer transition</topic><topic>Classical Mechanics</topic><topic>Compressibility</topic><topic>Computational fluid dynamics</topic><topic>Eigenvalues</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Parabolized stability equations</topic><topic>Partial Differential Equations</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Yufeng</creatorcontrib><creatorcontrib>Liu, Jianxin</creatorcontrib><creatorcontrib>Luo, Jisheng</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Yufeng</au><au>Liu, Jianxin</au><au>Luo, Jisheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement for expansion of parabolized stability equation method in boundary layer stability analysis</atitle><jtitle>Applied mathematics and mechanics</jtitle><stitle>Appl. Math. Mech.-Engl. Ed</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>39</volume><issue>12</issue><spage>1737</spage><epage>1754</epage><pages>1737-1754</pages><issn>0253-4827</issn><eissn>1573-2754</eissn><abstract>An improved expansion of the parabolized stability equation (iEPSE) method is proposed for the accurate linear instability prediction in boundary layers. It is a local eigenvalue problem, and the streamwise wavenumber α and its streamwise gradient d α /d x are unknown variables. This eigenvalue problem is solved for the eigenvalue d α /d x with an initial α , and the correction of α is performed with the conservation relation used in the PSE. The iEPSE is validated in several compressible and incompressible boundary layers. The computational results show that the prediction accuracy of the iEPSE is significantly higher than that of the ESPE, and it is in excellent agreement with the PSE which is regarded as the baseline for comparison. In addition, the unphysical multiple eigenmode problem in the EPSE is solved by using the iEPSE. As a local non-parallel stability analysis tool, the iEPSE has great potential application in the e N transition prediction in general three-dimensional boundary layers.</abstract><cop>Shanghai</cop><pub>Shanghai University</pub><doi>10.1007/s10483-019-2401-9</doi><tpages>18</tpages><edition>English ed.</edition></addata></record>
fulltext fulltext
identifier ISSN: 0253-4827
ispartof Applied mathematics and mechanics, 2018-12, Vol.39 (12), p.1737-1754
issn 0253-4827
1573-2754
language eng
recordid cdi_wanfang_journals_yysxhlx_e201812003
source SpringerLink Journals; Alma/SFX Local Collection
subjects Applications of Mathematics
Boundary layer stability
Boundary layer transition
Classical Mechanics
Compressibility
Computational fluid dynamics
Eigenvalues
Fluid- and Aerodynamics
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Parabolized stability equations
Partial Differential Equations
Stability
Stability analysis
Wavelengths
title Improvement for expansion of parabolized stability equation method in boundary layer stability analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A50%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20for%20expansion%20of%20parabolized%20stability%20equation%20method%20in%20boundary%20layer%20stability%20analysis&rft.jtitle=Applied%20mathematics%20and%20mechanics&rft.au=Han,%20Yufeng&rft.date=2018-12-01&rft.volume=39&rft.issue=12&rft.spage=1737&rft.epage=1754&rft.pages=1737-1754&rft.issn=0253-4827&rft.eissn=1573-2754&rft_id=info:doi/10.1007/s10483-019-2401-9&rft_dat=%3Cwanfang_jour_proqu%3Eyysxhlx_e201812003%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2140165061&rft_id=info:pmid/&rft_wanfj_id=yysxhlx_e201812003&rfr_iscdi=true