Asymptotic solutions of the flow of a Johnson-Segalman fluid through a slowly varying pipe using double perturbation strategy
A double perturbation strategy is presented to solve the asymptotic solutions of a Johnson-Segalman (J-S) fluid through a slowly varying pipe. First, a small parameter of the slowly varying angle is taken as the small perturbation parameter, and then the second-order asymptotic solution of the flow...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and mechanics 2018-02, Vol.39 (2), p.169-180 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 180 |
---|---|
container_issue | 2 |
container_start_page | 169 |
container_title | Applied mathematics and mechanics |
container_volume | 39 |
creator | Zou, Xinyin Qiu, Xiang Luo, Jianping Li, Jiahua Kaloni, P. N. Liu, Yulu |
description | A double perturbation strategy is presented to solve the asymptotic solutions of a Johnson-Segalman (J-S) fluid through a slowly varying pipe. First, a small parameter of the slowly varying angle is taken as the small perturbation parameter, and then the second-order asymptotic solution of the flow of a Newtonian fluid through a slowly varying pipe is obtained in the first perturbation strategy. Second, the viscoelastic parameter is selected as the small perturbation parameter in the second perturbation strategy to solve the asymptotic solution of the flow of a J-S fluid through a slowly varying pipe. Finally, the parameter effects, including the axial distance, the slowly varying angle, and the Reynolds number, on the velocity distributions are analyzed. The results show that the increases in both the axial distance and the slowly varying angle make the axial velocity slow down. However, the radial velocity increases with the slowly varying angle, and decreases with the axial distance. There are two special positions in the distribution curves of the axial velocity and the radial velocity with different Reynolds numbers, and there are different trends on both sides of the special positions. The double perturbation strategy is applicable to such problems with the flow of a non-Newtonian fluid through a slowly varying pipe. |
doi_str_mv | 10.1007/s10483-018-2300-6 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_yysxhlx_e201802002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>674320149</cqvip_id><wanfj_id>yysxhlx_e201802002</wanfj_id><sourcerecordid>yysxhlx_e201802002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-9ed24bd4929f3ec8a4c97f06e71a3b544022fcf7049ce3486e3ce55b7ad8f35a3</originalsourceid><addsrcrecordid>eNp9kU2P1iAUhYnRxNfRH-CO6M4EvXyVdjmZ-JlJXKhrQltoO-kLHaDOdOF_l6YTdeWKm_Cccy4chF5SeEsB1LtEQdScAK0J4wCkeoROVCpOmJLiMToBk5yImqmn6FlKNwAglBAn9Osybeclhzx1OIV5zVPwCQeH82ixm8PdPhv8JYw-BU--2cHMZ-PL1Tr1BYphHcYCpILOG_5p4jb5AS_TYvGa9rEPaztbvNiY19iaPQCnHE22w_YcPXFmTvbFw3mBfnx4__3qE7n--vHz1eU16TiHTBrbM9H2omGN47arjega5aCyihreSiGAMdc5BaLpLBd1ZXlnpWyV6WvHpeEX6M3he2e8M37QN2GNviTqbUv343yvLStfBwyAFfj1AS8x3K425b80bRrGhVQgC0UPqoshpWidXuJ0Ls_XFPReiT4q0cVX75XoqmjYoUmF9YON_zj_R_TqIWgMfrgtuj9JlRK87C0a_hv6WpxX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992345705</pqid></control><display><type>article</type><title>Asymptotic solutions of the flow of a Johnson-Segalman fluid through a slowly varying pipe using double perturbation strategy</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Zou, Xinyin ; Qiu, Xiang ; Luo, Jianping ; Li, Jiahua ; Kaloni, P. N. ; Liu, Yulu</creator><creatorcontrib>Zou, Xinyin ; Qiu, Xiang ; Luo, Jianping ; Li, Jiahua ; Kaloni, P. N. ; Liu, Yulu</creatorcontrib><description>A double perturbation strategy is presented to solve the asymptotic solutions of a Johnson-Segalman (J-S) fluid through a slowly varying pipe. First, a small parameter of the slowly varying angle is taken as the small perturbation parameter, and then the second-order asymptotic solution of the flow of a Newtonian fluid through a slowly varying pipe is obtained in the first perturbation strategy. Second, the viscoelastic parameter is selected as the small perturbation parameter in the second perturbation strategy to solve the asymptotic solution of the flow of a J-S fluid through a slowly varying pipe. Finally, the parameter effects, including the axial distance, the slowly varying angle, and the Reynolds number, on the velocity distributions are analyzed. The results show that the increases in both the axial distance and the slowly varying angle make the axial velocity slow down. However, the radial velocity increases with the slowly varying angle, and decreases with the axial distance. There are two special positions in the distribution curves of the axial velocity and the radial velocity with different Reynolds numbers, and there are different trends on both sides of the special positions. The double perturbation strategy is applicable to such problems with the flow of a non-Newtonian fluid through a slowly varying pipe.</description><edition>English ed.</edition><identifier>ISSN: 0253-4827</identifier><identifier>EISSN: 1573-2754</identifier><identifier>DOI: 10.1007/s10483-018-2300-6</identifier><language>eng</language><publisher>Shanghai: Shanghai University</publisher><subject>Applications of Mathematics ; Asymptotic properties ; Classical Mechanics ; Fluid dynamics ; Fluid flow ; Fluid- and Aerodynamics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Newtonian fluids ; Non Newtonian fluids ; Partial Differential Equations ; Pipes ; Radial velocity ; Reynolds number ; Strategy ; Velocity ; Viscoelasticity</subject><ispartof>Applied mathematics and mechanics, 2018-02, Vol.39 (2), p.169-180</ispartof><rights>Shanghai University and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c330t-9ed24bd4929f3ec8a4c97f06e71a3b544022fcf7049ce3486e3ce55b7ad8f35a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86647X/86647X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10483-018-2300-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10483-018-2300-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zou, Xinyin</creatorcontrib><creatorcontrib>Qiu, Xiang</creatorcontrib><creatorcontrib>Luo, Jianping</creatorcontrib><creatorcontrib>Li, Jiahua</creatorcontrib><creatorcontrib>Kaloni, P. N.</creatorcontrib><creatorcontrib>Liu, Yulu</creatorcontrib><title>Asymptotic solutions of the flow of a Johnson-Segalman fluid through a slowly varying pipe using double perturbation strategy</title><title>Applied mathematics and mechanics</title><addtitle>Appl. Math. Mech.-Engl. Ed</addtitle><addtitle>Applied Mathematics and Mechanics(English Edition)</addtitle><description>A double perturbation strategy is presented to solve the asymptotic solutions of a Johnson-Segalman (J-S) fluid through a slowly varying pipe. First, a small parameter of the slowly varying angle is taken as the small perturbation parameter, and then the second-order asymptotic solution of the flow of a Newtonian fluid through a slowly varying pipe is obtained in the first perturbation strategy. Second, the viscoelastic parameter is selected as the small perturbation parameter in the second perturbation strategy to solve the asymptotic solution of the flow of a J-S fluid through a slowly varying pipe. Finally, the parameter effects, including the axial distance, the slowly varying angle, and the Reynolds number, on the velocity distributions are analyzed. The results show that the increases in both the axial distance and the slowly varying angle make the axial velocity slow down. However, the radial velocity increases with the slowly varying angle, and decreases with the axial distance. There are two special positions in the distribution curves of the axial velocity and the radial velocity with different Reynolds numbers, and there are different trends on both sides of the special positions. The double perturbation strategy is applicable to such problems with the flow of a non-Newtonian fluid through a slowly varying pipe.</description><subject>Applications of Mathematics</subject><subject>Asymptotic properties</subject><subject>Classical Mechanics</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Newtonian fluids</subject><subject>Non Newtonian fluids</subject><subject>Partial Differential Equations</subject><subject>Pipes</subject><subject>Radial velocity</subject><subject>Reynolds number</subject><subject>Strategy</subject><subject>Velocity</subject><subject>Viscoelasticity</subject><issn>0253-4827</issn><issn>1573-2754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kU2P1iAUhYnRxNfRH-CO6M4EvXyVdjmZ-JlJXKhrQltoO-kLHaDOdOF_l6YTdeWKm_Cccy4chF5SeEsB1LtEQdScAK0J4wCkeoROVCpOmJLiMToBk5yImqmn6FlKNwAglBAn9Osybeclhzx1OIV5zVPwCQeH82ixm8PdPhv8JYw-BU--2cHMZ-PL1Tr1BYphHcYCpILOG_5p4jb5AS_TYvGa9rEPaztbvNiY19iaPQCnHE22w_YcPXFmTvbFw3mBfnx4__3qE7n--vHz1eU16TiHTBrbM9H2omGN47arjega5aCyihreSiGAMdc5BaLpLBd1ZXlnpWyV6WvHpeEX6M3he2e8M37QN2GNviTqbUv343yvLStfBwyAFfj1AS8x3K425b80bRrGhVQgC0UPqoshpWidXuJ0Ls_XFPReiT4q0cVX75XoqmjYoUmF9YON_zj_R_TqIWgMfrgtuj9JlRK87C0a_hv6WpxX</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Zou, Xinyin</creator><creator>Qiu, Xiang</creator><creator>Luo, Jianping</creator><creator>Li, Jiahua</creator><creator>Kaloni, P. N.</creator><creator>Liu, Yulu</creator><general>Shanghai University</general><general>Springer Nature B.V</general><general>School of Mechanical Engineering, Shanghai Institute of Technology, Shanghai 201418, China%School of Science, Shanghai Institute of Technology, Shanghai 201418, China%College of Urban Construction and Safety Engineering, Shanghai Institute of Technology, Shanghai 201418, China%Department of Mathematics and Statistics, University of Windsor, Ontario N9B 3P4, Canada%School of Science, Shanghai Institute of Technology, Shanghai 201418, China</general><general>Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20180201</creationdate><title>Asymptotic solutions of the flow of a Johnson-Segalman fluid through a slowly varying pipe using double perturbation strategy</title><author>Zou, Xinyin ; Qiu, Xiang ; Luo, Jianping ; Li, Jiahua ; Kaloni, P. N. ; Liu, Yulu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-9ed24bd4929f3ec8a4c97f06e71a3b544022fcf7049ce3486e3ce55b7ad8f35a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications of Mathematics</topic><topic>Asymptotic properties</topic><topic>Classical Mechanics</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Newtonian fluids</topic><topic>Non Newtonian fluids</topic><topic>Partial Differential Equations</topic><topic>Pipes</topic><topic>Radial velocity</topic><topic>Reynolds number</topic><topic>Strategy</topic><topic>Velocity</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Xinyin</creatorcontrib><creatorcontrib>Qiu, Xiang</creatorcontrib><creatorcontrib>Luo, Jianping</creatorcontrib><creatorcontrib>Li, Jiahua</creatorcontrib><creatorcontrib>Kaloni, P. N.</creatorcontrib><creatorcontrib>Liu, Yulu</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Xinyin</au><au>Qiu, Xiang</au><au>Luo, Jianping</au><au>Li, Jiahua</au><au>Kaloni, P. N.</au><au>Liu, Yulu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic solutions of the flow of a Johnson-Segalman fluid through a slowly varying pipe using double perturbation strategy</atitle><jtitle>Applied mathematics and mechanics</jtitle><stitle>Appl. Math. Mech.-Engl. Ed</stitle><addtitle>Applied Mathematics and Mechanics(English Edition)</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>39</volume><issue>2</issue><spage>169</spage><epage>180</epage><pages>169-180</pages><issn>0253-4827</issn><eissn>1573-2754</eissn><abstract>A double perturbation strategy is presented to solve the asymptotic solutions of a Johnson-Segalman (J-S) fluid through a slowly varying pipe. First, a small parameter of the slowly varying angle is taken as the small perturbation parameter, and then the second-order asymptotic solution of the flow of a Newtonian fluid through a slowly varying pipe is obtained in the first perturbation strategy. Second, the viscoelastic parameter is selected as the small perturbation parameter in the second perturbation strategy to solve the asymptotic solution of the flow of a J-S fluid through a slowly varying pipe. Finally, the parameter effects, including the axial distance, the slowly varying angle, and the Reynolds number, on the velocity distributions are analyzed. The results show that the increases in both the axial distance and the slowly varying angle make the axial velocity slow down. However, the radial velocity increases with the slowly varying angle, and decreases with the axial distance. There are two special positions in the distribution curves of the axial velocity and the radial velocity with different Reynolds numbers, and there are different trends on both sides of the special positions. The double perturbation strategy is applicable to such problems with the flow of a non-Newtonian fluid through a slowly varying pipe.</abstract><cop>Shanghai</cop><pub>Shanghai University</pub><doi>10.1007/s10483-018-2300-6</doi><tpages>12</tpages><edition>English ed.</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-4827 |
ispartof | Applied mathematics and mechanics, 2018-02, Vol.39 (2), p.169-180 |
issn | 0253-4827 1573-2754 |
language | eng |
recordid | cdi_wanfang_journals_yysxhlx_e201802002 |
source | SpringerLink Journals; Alma/SFX Local Collection |
subjects | Applications of Mathematics Asymptotic properties Classical Mechanics Fluid dynamics Fluid flow Fluid- and Aerodynamics Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Newtonian fluids Non Newtonian fluids Partial Differential Equations Pipes Radial velocity Reynolds number Strategy Velocity Viscoelasticity |
title | Asymptotic solutions of the flow of a Johnson-Segalman fluid through a slowly varying pipe using double perturbation strategy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A46%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20solutions%20of%20the%20flow%20of%20a%20Johnson-Segalman%20fluid%20through%20a%20slowly%20varying%20pipe%20using%20double%20perturbation%20strategy&rft.jtitle=Applied%20mathematics%20and%20mechanics&rft.au=Zou,%20Xinyin&rft.date=2018-02-01&rft.volume=39&rft.issue=2&rft.spage=169&rft.epage=180&rft.pages=169-180&rft.issn=0253-4827&rft.eissn=1573-2754&rft_id=info:doi/10.1007/s10483-018-2300-6&rft_dat=%3Cwanfang_jour_proqu%3Eyysxhlx_e201802002%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1992345705&rft_id=info:pmid/&rft_cqvip_id=674320149&rft_wanfj_id=yysxhlx_e201802002&rfr_iscdi=true |