Asymptotic solutions of the flow of a Johnson-Segalman fluid through a slowly varying pipe using double perturbation strategy

A double perturbation strategy is presented to solve the asymptotic solutions of a Johnson-Segalman (J-S) fluid through a slowly varying pipe. First, a small parameter of the slowly varying angle is taken as the small perturbation parameter, and then the second-order asymptotic solution of the flow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and mechanics 2018-02, Vol.39 (2), p.169-180
Hauptverfasser: Zou, Xinyin, Qiu, Xiang, Luo, Jianping, Li, Jiahua, Kaloni, P. N., Liu, Yulu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 180
container_issue 2
container_start_page 169
container_title Applied mathematics and mechanics
container_volume 39
creator Zou, Xinyin
Qiu, Xiang
Luo, Jianping
Li, Jiahua
Kaloni, P. N.
Liu, Yulu
description A double perturbation strategy is presented to solve the asymptotic solutions of a Johnson-Segalman (J-S) fluid through a slowly varying pipe. First, a small parameter of the slowly varying angle is taken as the small perturbation parameter, and then the second-order asymptotic solution of the flow of a Newtonian fluid through a slowly varying pipe is obtained in the first perturbation strategy. Second, the viscoelastic parameter is selected as the small perturbation parameter in the second perturbation strategy to solve the asymptotic solution of the flow of a J-S fluid through a slowly varying pipe. Finally, the parameter effects, including the axial distance, the slowly varying angle, and the Reynolds number, on the velocity distributions are analyzed. The results show that the increases in both the axial distance and the slowly varying angle make the axial velocity slow down. However, the radial velocity increases with the slowly varying angle, and decreases with the axial distance. There are two special positions in the distribution curves of the axial velocity and the radial velocity with different Reynolds numbers, and there are different trends on both sides of the special positions. The double perturbation strategy is applicable to such problems with the flow of a non-Newtonian fluid through a slowly varying pipe.
doi_str_mv 10.1007/s10483-018-2300-6
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_yysxhlx_e201802002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>674320149</cqvip_id><wanfj_id>yysxhlx_e201802002</wanfj_id><sourcerecordid>yysxhlx_e201802002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-9ed24bd4929f3ec8a4c97f06e71a3b544022fcf7049ce3486e3ce55b7ad8f35a3</originalsourceid><addsrcrecordid>eNp9kU2P1iAUhYnRxNfRH-CO6M4EvXyVdjmZ-JlJXKhrQltoO-kLHaDOdOF_l6YTdeWKm_Cccy4chF5SeEsB1LtEQdScAK0J4wCkeoROVCpOmJLiMToBk5yImqmn6FlKNwAglBAn9Osybeclhzx1OIV5zVPwCQeH82ixm8PdPhv8JYw-BU--2cHMZ-PL1Tr1BYphHcYCpILOG_5p4jb5AS_TYvGa9rEPaztbvNiY19iaPQCnHE22w_YcPXFmTvbFw3mBfnx4__3qE7n--vHz1eU16TiHTBrbM9H2omGN47arjega5aCyihreSiGAMdc5BaLpLBd1ZXlnpWyV6WvHpeEX6M3he2e8M37QN2GNviTqbUv343yvLStfBwyAFfj1AS8x3K425b80bRrGhVQgC0UPqoshpWidXuJ0Ls_XFPReiT4q0cVX75XoqmjYoUmF9YON_zj_R_TqIWgMfrgtuj9JlRK87C0a_hv6WpxX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992345705</pqid></control><display><type>article</type><title>Asymptotic solutions of the flow of a Johnson-Segalman fluid through a slowly varying pipe using double perturbation strategy</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Zou, Xinyin ; Qiu, Xiang ; Luo, Jianping ; Li, Jiahua ; Kaloni, P. N. ; Liu, Yulu</creator><creatorcontrib>Zou, Xinyin ; Qiu, Xiang ; Luo, Jianping ; Li, Jiahua ; Kaloni, P. N. ; Liu, Yulu</creatorcontrib><description>A double perturbation strategy is presented to solve the asymptotic solutions of a Johnson-Segalman (J-S) fluid through a slowly varying pipe. First, a small parameter of the slowly varying angle is taken as the small perturbation parameter, and then the second-order asymptotic solution of the flow of a Newtonian fluid through a slowly varying pipe is obtained in the first perturbation strategy. Second, the viscoelastic parameter is selected as the small perturbation parameter in the second perturbation strategy to solve the asymptotic solution of the flow of a J-S fluid through a slowly varying pipe. Finally, the parameter effects, including the axial distance, the slowly varying angle, and the Reynolds number, on the velocity distributions are analyzed. The results show that the increases in both the axial distance and the slowly varying angle make the axial velocity slow down. However, the radial velocity increases with the slowly varying angle, and decreases with the axial distance. There are two special positions in the distribution curves of the axial velocity and the radial velocity with different Reynolds numbers, and there are different trends on both sides of the special positions. The double perturbation strategy is applicable to such problems with the flow of a non-Newtonian fluid through a slowly varying pipe.</description><edition>English ed.</edition><identifier>ISSN: 0253-4827</identifier><identifier>EISSN: 1573-2754</identifier><identifier>DOI: 10.1007/s10483-018-2300-6</identifier><language>eng</language><publisher>Shanghai: Shanghai University</publisher><subject>Applications of Mathematics ; Asymptotic properties ; Classical Mechanics ; Fluid dynamics ; Fluid flow ; Fluid- and Aerodynamics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Newtonian fluids ; Non Newtonian fluids ; Partial Differential Equations ; Pipes ; Radial velocity ; Reynolds number ; Strategy ; Velocity ; Viscoelasticity</subject><ispartof>Applied mathematics and mechanics, 2018-02, Vol.39 (2), p.169-180</ispartof><rights>Shanghai University and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c330t-9ed24bd4929f3ec8a4c97f06e71a3b544022fcf7049ce3486e3ce55b7ad8f35a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86647X/86647X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10483-018-2300-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10483-018-2300-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zou, Xinyin</creatorcontrib><creatorcontrib>Qiu, Xiang</creatorcontrib><creatorcontrib>Luo, Jianping</creatorcontrib><creatorcontrib>Li, Jiahua</creatorcontrib><creatorcontrib>Kaloni, P. N.</creatorcontrib><creatorcontrib>Liu, Yulu</creatorcontrib><title>Asymptotic solutions of the flow of a Johnson-Segalman fluid through a slowly varying pipe using double perturbation strategy</title><title>Applied mathematics and mechanics</title><addtitle>Appl. Math. Mech.-Engl. Ed</addtitle><addtitle>Applied Mathematics and Mechanics(English Edition)</addtitle><description>A double perturbation strategy is presented to solve the asymptotic solutions of a Johnson-Segalman (J-S) fluid through a slowly varying pipe. First, a small parameter of the slowly varying angle is taken as the small perturbation parameter, and then the second-order asymptotic solution of the flow of a Newtonian fluid through a slowly varying pipe is obtained in the first perturbation strategy. Second, the viscoelastic parameter is selected as the small perturbation parameter in the second perturbation strategy to solve the asymptotic solution of the flow of a J-S fluid through a slowly varying pipe. Finally, the parameter effects, including the axial distance, the slowly varying angle, and the Reynolds number, on the velocity distributions are analyzed. The results show that the increases in both the axial distance and the slowly varying angle make the axial velocity slow down. However, the radial velocity increases with the slowly varying angle, and decreases with the axial distance. There are two special positions in the distribution curves of the axial velocity and the radial velocity with different Reynolds numbers, and there are different trends on both sides of the special positions. The double perturbation strategy is applicable to such problems with the flow of a non-Newtonian fluid through a slowly varying pipe.</description><subject>Applications of Mathematics</subject><subject>Asymptotic properties</subject><subject>Classical Mechanics</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Newtonian fluids</subject><subject>Non Newtonian fluids</subject><subject>Partial Differential Equations</subject><subject>Pipes</subject><subject>Radial velocity</subject><subject>Reynolds number</subject><subject>Strategy</subject><subject>Velocity</subject><subject>Viscoelasticity</subject><issn>0253-4827</issn><issn>1573-2754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kU2P1iAUhYnRxNfRH-CO6M4EvXyVdjmZ-JlJXKhrQltoO-kLHaDOdOF_l6YTdeWKm_Cccy4chF5SeEsB1LtEQdScAK0J4wCkeoROVCpOmJLiMToBk5yImqmn6FlKNwAglBAn9Osybeclhzx1OIV5zVPwCQeH82ixm8PdPhv8JYw-BU--2cHMZ-PL1Tr1BYphHcYCpILOG_5p4jb5AS_TYvGa9rEPaztbvNiY19iaPQCnHE22w_YcPXFmTvbFw3mBfnx4__3qE7n--vHz1eU16TiHTBrbM9H2omGN47arjega5aCyihreSiGAMdc5BaLpLBd1ZXlnpWyV6WvHpeEX6M3he2e8M37QN2GNviTqbUv343yvLStfBwyAFfj1AS8x3K425b80bRrGhVQgC0UPqoshpWidXuJ0Ls_XFPReiT4q0cVX75XoqmjYoUmF9YON_zj_R_TqIWgMfrgtuj9JlRK87C0a_hv6WpxX</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Zou, Xinyin</creator><creator>Qiu, Xiang</creator><creator>Luo, Jianping</creator><creator>Li, Jiahua</creator><creator>Kaloni, P. N.</creator><creator>Liu, Yulu</creator><general>Shanghai University</general><general>Springer Nature B.V</general><general>School of Mechanical Engineering, Shanghai Institute of Technology, Shanghai 201418, China%School of Science, Shanghai Institute of Technology, Shanghai 201418, China%College of Urban Construction and Safety Engineering, Shanghai Institute of Technology, Shanghai 201418, China%Department of Mathematics and Statistics, University of Windsor, Ontario N9B 3P4, Canada%School of Science, Shanghai Institute of Technology, Shanghai 201418, China</general><general>Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20180201</creationdate><title>Asymptotic solutions of the flow of a Johnson-Segalman fluid through a slowly varying pipe using double perturbation strategy</title><author>Zou, Xinyin ; Qiu, Xiang ; Luo, Jianping ; Li, Jiahua ; Kaloni, P. N. ; Liu, Yulu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-9ed24bd4929f3ec8a4c97f06e71a3b544022fcf7049ce3486e3ce55b7ad8f35a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications of Mathematics</topic><topic>Asymptotic properties</topic><topic>Classical Mechanics</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Newtonian fluids</topic><topic>Non Newtonian fluids</topic><topic>Partial Differential Equations</topic><topic>Pipes</topic><topic>Radial velocity</topic><topic>Reynolds number</topic><topic>Strategy</topic><topic>Velocity</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Xinyin</creatorcontrib><creatorcontrib>Qiu, Xiang</creatorcontrib><creatorcontrib>Luo, Jianping</creatorcontrib><creatorcontrib>Li, Jiahua</creatorcontrib><creatorcontrib>Kaloni, P. N.</creatorcontrib><creatorcontrib>Liu, Yulu</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Xinyin</au><au>Qiu, Xiang</au><au>Luo, Jianping</au><au>Li, Jiahua</au><au>Kaloni, P. N.</au><au>Liu, Yulu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic solutions of the flow of a Johnson-Segalman fluid through a slowly varying pipe using double perturbation strategy</atitle><jtitle>Applied mathematics and mechanics</jtitle><stitle>Appl. Math. Mech.-Engl. Ed</stitle><addtitle>Applied Mathematics and Mechanics(English Edition)</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>39</volume><issue>2</issue><spage>169</spage><epage>180</epage><pages>169-180</pages><issn>0253-4827</issn><eissn>1573-2754</eissn><abstract>A double perturbation strategy is presented to solve the asymptotic solutions of a Johnson-Segalman (J-S) fluid through a slowly varying pipe. First, a small parameter of the slowly varying angle is taken as the small perturbation parameter, and then the second-order asymptotic solution of the flow of a Newtonian fluid through a slowly varying pipe is obtained in the first perturbation strategy. Second, the viscoelastic parameter is selected as the small perturbation parameter in the second perturbation strategy to solve the asymptotic solution of the flow of a J-S fluid through a slowly varying pipe. Finally, the parameter effects, including the axial distance, the slowly varying angle, and the Reynolds number, on the velocity distributions are analyzed. The results show that the increases in both the axial distance and the slowly varying angle make the axial velocity slow down. However, the radial velocity increases with the slowly varying angle, and decreases with the axial distance. There are two special positions in the distribution curves of the axial velocity and the radial velocity with different Reynolds numbers, and there are different trends on both sides of the special positions. The double perturbation strategy is applicable to such problems with the flow of a non-Newtonian fluid through a slowly varying pipe.</abstract><cop>Shanghai</cop><pub>Shanghai University</pub><doi>10.1007/s10483-018-2300-6</doi><tpages>12</tpages><edition>English ed.</edition></addata></record>
fulltext fulltext
identifier ISSN: 0253-4827
ispartof Applied mathematics and mechanics, 2018-02, Vol.39 (2), p.169-180
issn 0253-4827
1573-2754
language eng
recordid cdi_wanfang_journals_yysxhlx_e201802002
source SpringerLink Journals; Alma/SFX Local Collection
subjects Applications of Mathematics
Asymptotic properties
Classical Mechanics
Fluid dynamics
Fluid flow
Fluid- and Aerodynamics
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Newtonian fluids
Non Newtonian fluids
Partial Differential Equations
Pipes
Radial velocity
Reynolds number
Strategy
Velocity
Viscoelasticity
title Asymptotic solutions of the flow of a Johnson-Segalman fluid through a slowly varying pipe using double perturbation strategy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A46%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20solutions%20of%20the%20flow%20of%20a%20Johnson-Segalman%20fluid%20through%20a%20slowly%20varying%20pipe%20using%20double%20perturbation%20strategy&rft.jtitle=Applied%20mathematics%20and%20mechanics&rft.au=Zou,%20Xinyin&rft.date=2018-02-01&rft.volume=39&rft.issue=2&rft.spage=169&rft.epage=180&rft.pages=169-180&rft.issn=0253-4827&rft.eissn=1573-2754&rft_id=info:doi/10.1007/s10483-018-2300-6&rft_dat=%3Cwanfang_jour_proqu%3Eyysxhlx_e201802002%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1992345705&rft_id=info:pmid/&rft_cqvip_id=674320149&rft_wanfj_id=yysxhlx_e201802002&rfr_iscdi=true