Dynamic analysis of a rotating tapered cantilever Timoshenko beam based on the power series method

The mathematical modeling of a rotating tapered Timoshenko beam with preset and pre-twist angles is constructed. The partial differential equations governing the six degrees, i.e., three displacements in the axial, flapwise, and edgewise directions and three cross-sectional angles of torsion, flapwi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and mechanics 2017-10, Vol.38 (10), p.1425-1438
Hauptverfasser: Yang, Xiaodong, Wang, Shaowen, Zhang, Wei, Qin, Zhaohong, Yang, Tianzhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1438
container_issue 10
container_start_page 1425
container_title Applied mathematics and mechanics
container_volume 38
creator Yang, Xiaodong
Wang, Shaowen
Zhang, Wei
Qin, Zhaohong
Yang, Tianzhi
description The mathematical modeling of a rotating tapered Timoshenko beam with preset and pre-twist angles is constructed. The partial differential equations governing the six degrees, i.e., three displacements in the axial, flapwise, and edgewise directions and three cross-sectional angles of torsion, flapwise bending, and edgewise bending, are obtained by the Euler angle descriptions. The power series method is then used to inves- tigate the natural frequencies and the corresponding complex mode functions. It is found that all the natural frequencies are increased by the centrifugal stiffening except the twist frequency, which is slightly decreased. The tapering ratio increases the first transverse, torsional, and axial frequencies, while decreases the second transverse frequency. Because of the pre-twist, all the directions are gyroscopically coupled with the phase differences among the six degrees.
doi_str_mv 10.1007/s10483-017-2249-6
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_yysxhlx_e201710006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>673212938</cqvip_id><wanfj_id>yysxhlx_e201710006</wanfj_id><sourcerecordid>yysxhlx_e201710006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-69379a2d5336b43a08dd6e1afbf8eb6a8a20e73a3459ffbc49257bf41bf4dc23</originalsourceid><addsrcrecordid>eNp9kE1P3DAQhi0EEsvCD-BmtTekUH8lTo7Vlhaklbjs3Zok401gYy926JJ_j1dBlFMPo7k87zuah5Brzm45Y_pH5EyVMmNcZ0KoKitOyILnWmZC5-qULJjIZaZKoc_JRYxPjDGllVqQ-tfkYOgbCg52U-wj9ZYCDX6EsXdbOsIeA7a0ATf2O_yLgW76wccO3bOnNcJAa4gJ8I6OHdK9PyQkYugx0gHHzreX5MzCLuLVx16Sze-7zeo-Wz_-eVj9XGeN1OWYFZXUFYg2l7KolQRWtm2BHGxtS6wLKEEw1BKkyitr60ZVIte1VTxN2wi5JDdz7QGcBbc1T_41pKeimab41u3eDIqkJ9liRYK_z_A--JdXjOM_mlc5U4ViokwUn6km-BgDWrMP_QBhMpyZo3Yzazep1xy1m2OzmDMxsW6L4Uvzf0LfPg513m1fUu7zUqGl4KKSpXwH4u2RhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1950464028</pqid></control><display><type>article</type><title>Dynamic analysis of a rotating tapered cantilever Timoshenko beam based on the power series method</title><source>SpringerLink</source><source>Alma/SFX Local Collection</source><creator>Yang, Xiaodong ; Wang, Shaowen ; Zhang, Wei ; Qin, Zhaohong ; Yang, Tianzhi</creator><creatorcontrib>Yang, Xiaodong ; Wang, Shaowen ; Zhang, Wei ; Qin, Zhaohong ; Yang, Tianzhi</creatorcontrib><description>The mathematical modeling of a rotating tapered Timoshenko beam with preset and pre-twist angles is constructed. The partial differential equations governing the six degrees, i.e., three displacements in the axial, flapwise, and edgewise directions and three cross-sectional angles of torsion, flapwise bending, and edgewise bending, are obtained by the Euler angle descriptions. The power series method is then used to inves- tigate the natural frequencies and the corresponding complex mode functions. It is found that all the natural frequencies are increased by the centrifugal stiffening except the twist frequency, which is slightly decreased. The tapering ratio increases the first transverse, torsional, and axial frequencies, while decreases the second transverse frequency. Because of the pre-twist, all the directions are gyroscopically coupled with the phase differences among the six degrees.</description><edition>English ed.</edition><identifier>ISSN: 0253-4827</identifier><identifier>EISSN: 1573-2754</identifier><identifier>DOI: 10.1007/s10483-017-2249-6</identifier><language>eng</language><publisher>Shanghai: Shanghai University</publisher><subject>Applications of Mathematics ; Cantilever beams ; Classical Mechanics ; Differential equations ; Fluid- and Aerodynamics ; Functions (mathematics) ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Power series ; Resonant frequencies ; Stiffening ; Tapering ; Timoshenko梁 ; 偏微分方程 ; 固有频率 ; 幂级数法 ; 悬臂梁 ; 数学模型 ; 旋转 ; 锥形</subject><ispartof>Applied mathematics and mechanics, 2017-10, Vol.38 (10), p.1425-1438</ispartof><rights>Shanghai University and Springer-Verlag GmbH Germany 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-69379a2d5336b43a08dd6e1afbf8eb6a8a20e73a3459ffbc49257bf41bf4dc23</citedby><cites>FETCH-LOGICAL-c378t-69379a2d5336b43a08dd6e1afbf8eb6a8a20e73a3459ffbc49257bf41bf4dc23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86647X/86647X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10483-017-2249-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10483-017-2249-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Yang, Xiaodong</creatorcontrib><creatorcontrib>Wang, Shaowen</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Qin, Zhaohong</creatorcontrib><creatorcontrib>Yang, Tianzhi</creatorcontrib><title>Dynamic analysis of a rotating tapered cantilever Timoshenko beam based on the power series method</title><title>Applied mathematics and mechanics</title><addtitle>Appl. Math. Mech.-Engl. Ed</addtitle><addtitle>Applied Mathematics and Mechanics(English Edition)</addtitle><description>The mathematical modeling of a rotating tapered Timoshenko beam with preset and pre-twist angles is constructed. The partial differential equations governing the six degrees, i.e., three displacements in the axial, flapwise, and edgewise directions and three cross-sectional angles of torsion, flapwise bending, and edgewise bending, are obtained by the Euler angle descriptions. The power series method is then used to inves- tigate the natural frequencies and the corresponding complex mode functions. It is found that all the natural frequencies are increased by the centrifugal stiffening except the twist frequency, which is slightly decreased. The tapering ratio increases the first transverse, torsional, and axial frequencies, while decreases the second transverse frequency. Because of the pre-twist, all the directions are gyroscopically coupled with the phase differences among the six degrees.</description><subject>Applications of Mathematics</subject><subject>Cantilever beams</subject><subject>Classical Mechanics</subject><subject>Differential equations</subject><subject>Fluid- and Aerodynamics</subject><subject>Functions (mathematics)</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Power series</subject><subject>Resonant frequencies</subject><subject>Stiffening</subject><subject>Tapering</subject><subject>Timoshenko梁</subject><subject>偏微分方程</subject><subject>固有频率</subject><subject>幂级数法</subject><subject>悬臂梁</subject><subject>数学模型</subject><subject>旋转</subject><subject>锥形</subject><issn>0253-4827</issn><issn>1573-2754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1P3DAQhi0EEsvCD-BmtTekUH8lTo7Vlhaklbjs3Zok401gYy926JJ_j1dBlFMPo7k87zuah5Brzm45Y_pH5EyVMmNcZ0KoKitOyILnWmZC5-qULJjIZaZKoc_JRYxPjDGllVqQ-tfkYOgbCg52U-wj9ZYCDX6EsXdbOsIeA7a0ATf2O_yLgW76wccO3bOnNcJAa4gJ8I6OHdK9PyQkYugx0gHHzreX5MzCLuLVx16Sze-7zeo-Wz_-eVj9XGeN1OWYFZXUFYg2l7KolQRWtm2BHGxtS6wLKEEw1BKkyitr60ZVIte1VTxN2wi5JDdz7QGcBbc1T_41pKeimab41u3eDIqkJ9liRYK_z_A--JdXjOM_mlc5U4ViokwUn6km-BgDWrMP_QBhMpyZo3Yzazep1xy1m2OzmDMxsW6L4Uvzf0LfPg513m1fUu7zUqGl4KKSpXwH4u2RhQ</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Yang, Xiaodong</creator><creator>Wang, Shaowen</creator><creator>Zhang, Wei</creator><creator>Qin, Zhaohong</creator><creator>Yang, Tianzhi</creator><general>Shanghai University</general><general>Springer Nature B.V</general><general>Beijing Key Laboratory of Nonlinear Vibrations and Strength of Mechanical Structures, College of Mechanical Engineering, Beijing University of Technology, Beijing 100124, China%Science and Technology on Reliability and Environment Engineering Laboratory, Beijing Institute of Structure and Environment Engineering, Beijing 100176, China%Department of Engineering Mechanics, Shenyang Aerospace University,Shenyang 110136, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20171001</creationdate><title>Dynamic analysis of a rotating tapered cantilever Timoshenko beam based on the power series method</title><author>Yang, Xiaodong ; Wang, Shaowen ; Zhang, Wei ; Qin, Zhaohong ; Yang, Tianzhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-69379a2d5336b43a08dd6e1afbf8eb6a8a20e73a3459ffbc49257bf41bf4dc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applications of Mathematics</topic><topic>Cantilever beams</topic><topic>Classical Mechanics</topic><topic>Differential equations</topic><topic>Fluid- and Aerodynamics</topic><topic>Functions (mathematics)</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Power series</topic><topic>Resonant frequencies</topic><topic>Stiffening</topic><topic>Tapering</topic><topic>Timoshenko梁</topic><topic>偏微分方程</topic><topic>固有频率</topic><topic>幂级数法</topic><topic>悬臂梁</topic><topic>数学模型</topic><topic>旋转</topic><topic>锥形</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xiaodong</creatorcontrib><creatorcontrib>Wang, Shaowen</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Qin, Zhaohong</creatorcontrib><creatorcontrib>Yang, Tianzhi</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xiaodong</au><au>Wang, Shaowen</au><au>Zhang, Wei</au><au>Qin, Zhaohong</au><au>Yang, Tianzhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic analysis of a rotating tapered cantilever Timoshenko beam based on the power series method</atitle><jtitle>Applied mathematics and mechanics</jtitle><stitle>Appl. Math. Mech.-Engl. Ed</stitle><addtitle>Applied Mathematics and Mechanics(English Edition)</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>38</volume><issue>10</issue><spage>1425</spage><epage>1438</epage><pages>1425-1438</pages><issn>0253-4827</issn><eissn>1573-2754</eissn><abstract>The mathematical modeling of a rotating tapered Timoshenko beam with preset and pre-twist angles is constructed. The partial differential equations governing the six degrees, i.e., three displacements in the axial, flapwise, and edgewise directions and three cross-sectional angles of torsion, flapwise bending, and edgewise bending, are obtained by the Euler angle descriptions. The power series method is then used to inves- tigate the natural frequencies and the corresponding complex mode functions. It is found that all the natural frequencies are increased by the centrifugal stiffening except the twist frequency, which is slightly decreased. The tapering ratio increases the first transverse, torsional, and axial frequencies, while decreases the second transverse frequency. Because of the pre-twist, all the directions are gyroscopically coupled with the phase differences among the six degrees.</abstract><cop>Shanghai</cop><pub>Shanghai University</pub><doi>10.1007/s10483-017-2249-6</doi><tpages>14</tpages><edition>English ed.</edition></addata></record>
fulltext fulltext
identifier ISSN: 0253-4827
ispartof Applied mathematics and mechanics, 2017-10, Vol.38 (10), p.1425-1438
issn 0253-4827
1573-2754
language eng
recordid cdi_wanfang_journals_yysxhlx_e201710006
source SpringerLink; Alma/SFX Local Collection
subjects Applications of Mathematics
Cantilever beams
Classical Mechanics
Differential equations
Fluid- and Aerodynamics
Functions (mathematics)
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Partial Differential Equations
Power series
Resonant frequencies
Stiffening
Tapering
Timoshenko梁
偏微分方程
固有频率
幂级数法
悬臂梁
数学模型
旋转
锥形
title Dynamic analysis of a rotating tapered cantilever Timoshenko beam based on the power series method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A52%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20analysis%20of%20a%20rotating%20tapered%20cantilever%20Timoshenko%20beam%20based%20on%20the%20power%20series%20method&rft.jtitle=Applied%20mathematics%20and%20mechanics&rft.au=Yang,%20Xiaodong&rft.date=2017-10-01&rft.volume=38&rft.issue=10&rft.spage=1425&rft.epage=1438&rft.pages=1425-1438&rft.issn=0253-4827&rft.eissn=1573-2754&rft_id=info:doi/10.1007/s10483-017-2249-6&rft_dat=%3Cwanfang_jour_proqu%3Eyysxhlx_e201710006%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1950464028&rft_id=info:pmid/&rft_cqvip_id=673212938&rft_wanfj_id=yysxhlx_e201710006&rfr_iscdi=true