Bifurcation characteristics analysis of a class of nonlinear dynamical systems based on singularity theory

A method for seeking main bifurcation parameters of a class of nonlinear dynamical systems is proposed. The method is based on the effects of parametric varia- tion of dynamical systems on eigenvalues of the Frechet matrix. The singularity theory is used to study the engineering unfolding (EU) and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and mechanics 2017-09, Vol.38 (9), p.1233-1246
Hauptverfasser: Lu, Kuan, Chen, Yushu, Hou, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1246
container_issue 9
container_start_page 1233
container_title Applied mathematics and mechanics
container_volume 38
creator Lu, Kuan
Chen, Yushu
Hou, Lei
description A method for seeking main bifurcation parameters of a class of nonlinear dynamical systems is proposed. The method is based on the effects of parametric varia- tion of dynamical systems on eigenvalues of the Frechet matrix. The singularity theory is used to study the engineering unfolding (EU) and the universal unfolding (UU) of an arch structure model, respectively. Unfolding parameters of EU are combination of concerned physical parameters in actual engineering, and equivalence of unfolding parameters and physical parameters is verified. Transient sets and bifurcation behaviors of EU and UU are compared to illustrate that EU can reflect main bifurcation characteristics of non- linear systems in engineering. The results improve the understanding and the scope of applicability of EU in actual engineering systems when UU is difficult to be obtained.
doi_str_mv 10.1007/s10483-017-2234-8
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_yysxhlx_e201709004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>673092808</cqvip_id><wanfj_id>yysxhlx_e201709004</wanfj_id><sourcerecordid>yysxhlx_e201709004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-7a00ca907c8909af925b1ff6f699e450f76d57eaea0d079212829d4b9f4780b13</originalsourceid><addsrcrecordid>eNp9kMtuFDEQRVsoSEwCH8DOgh1SQ_k1tpcQ8ZIisYG1VeO2ZzzqcSeuHpH-exw6Alasqhbn3lKdrnvJ4S0HMO-Ig7KyB256IaTq7ZNuw7WRvTBaXXQbEFr2ygrzrLskOgKAMkptuuOHnM414JynwsIBK4Y51kxzDsSw4LhQJjYlhiyMSL_XMpUxl4iVDUvBUw44MlpojidiO6Q4sNZFuezPI9Y8L2w-xKkuz7unCUeKLx7nVffj08fv11_6m2-fv16_v-mDNHbuDQIEdGCCdeAwOaF3PKVt2joXlYZktoM2ESPCAMYJLqxwg9q5pIyFHZdX3Zu19yeWhGXvj9O5tk_ILwvdH8Z7H0XzBK45aPDrFb6t09050vyX5k5IozUo3Si-UqFORDUmf1vzCeviOfgH_37171uvf_DvbcuINUONLftY_2n-T-jV46HDVPZ3Lffn0tZIcMKClb8AckSU2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1923755045</pqid></control><display><type>article</type><title>Bifurcation characteristics analysis of a class of nonlinear dynamical systems based on singularity theory</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lu, Kuan ; Chen, Yushu ; Hou, Lei</creator><creatorcontrib>Lu, Kuan ; Chen, Yushu ; Hou, Lei</creatorcontrib><description>A method for seeking main bifurcation parameters of a class of nonlinear dynamical systems is proposed. The method is based on the effects of parametric varia- tion of dynamical systems on eigenvalues of the Frechet matrix. The singularity theory is used to study the engineering unfolding (EU) and the universal unfolding (UU) of an arch structure model, respectively. Unfolding parameters of EU are combination of concerned physical parameters in actual engineering, and equivalence of unfolding parameters and physical parameters is verified. Transient sets and bifurcation behaviors of EU and UU are compared to illustrate that EU can reflect main bifurcation characteristics of non- linear systems in engineering. The results improve the understanding and the scope of applicability of EU in actual engineering systems when UU is difficult to be obtained.</description><edition>English ed.</edition><identifier>ISSN: 0253-4827</identifier><identifier>EISSN: 1573-2754</identifier><identifier>DOI: 10.1007/s10483-017-2234-8</identifier><language>eng</language><publisher>Shanghai: Shanghai University</publisher><subject>Applications of Mathematics ; Arches ; Bifurcation theory ; Classical Mechanics ; Dynamical systems ; Eigenvalues ; Engineering ; Fluid- and Aerodynamics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Nonlinear dynamics ; Partial Differential Equations ; Physical properties</subject><ispartof>Applied mathematics and mechanics, 2017-09, Vol.38 (9), p.1233-1246</ispartof><rights>Shanghai University and Springer-Verlag Berlin Heidelberg 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-7a00ca907c8909af925b1ff6f699e450f76d57eaea0d079212829d4b9f4780b13</citedby><cites>FETCH-LOGICAL-c378t-7a00ca907c8909af925b1ff6f699e450f76d57eaea0d079212829d4b9f4780b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86647X/86647X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10483-017-2234-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10483-017-2234-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lu, Kuan</creatorcontrib><creatorcontrib>Chen, Yushu</creatorcontrib><creatorcontrib>Hou, Lei</creatorcontrib><title>Bifurcation characteristics analysis of a class of nonlinear dynamical systems based on singularity theory</title><title>Applied mathematics and mechanics</title><addtitle>Appl. Math. Mech.-Engl. Ed</addtitle><addtitle>Applied Mathematics and Mechanics(English Edition)</addtitle><description>A method for seeking main bifurcation parameters of a class of nonlinear dynamical systems is proposed. The method is based on the effects of parametric varia- tion of dynamical systems on eigenvalues of the Frechet matrix. The singularity theory is used to study the engineering unfolding (EU) and the universal unfolding (UU) of an arch structure model, respectively. Unfolding parameters of EU are combination of concerned physical parameters in actual engineering, and equivalence of unfolding parameters and physical parameters is verified. Transient sets and bifurcation behaviors of EU and UU are compared to illustrate that EU can reflect main bifurcation characteristics of non- linear systems in engineering. The results improve the understanding and the scope of applicability of EU in actual engineering systems when UU is difficult to be obtained.</description><subject>Applications of Mathematics</subject><subject>Arches</subject><subject>Bifurcation theory</subject><subject>Classical Mechanics</subject><subject>Dynamical systems</subject><subject>Eigenvalues</subject><subject>Engineering</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear dynamics</subject><subject>Partial Differential Equations</subject><subject>Physical properties</subject><issn>0253-4827</issn><issn>1573-2754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMtuFDEQRVsoSEwCH8DOgh1SQ_k1tpcQ8ZIisYG1VeO2ZzzqcSeuHpH-exw6Alasqhbn3lKdrnvJ4S0HMO-Ig7KyB256IaTq7ZNuw7WRvTBaXXQbEFr2ygrzrLskOgKAMkptuuOHnM414JynwsIBK4Y51kxzDsSw4LhQJjYlhiyMSL_XMpUxl4iVDUvBUw44MlpojidiO6Q4sNZFuezPI9Y8L2w-xKkuz7unCUeKLx7nVffj08fv11_6m2-fv16_v-mDNHbuDQIEdGCCdeAwOaF3PKVt2joXlYZktoM2ESPCAMYJLqxwg9q5pIyFHZdX3Zu19yeWhGXvj9O5tk_ILwvdH8Z7H0XzBK45aPDrFb6t09050vyX5k5IozUo3Si-UqFORDUmf1vzCeviOfgH_37171uvf_DvbcuINUONLftY_2n-T-jV46HDVPZ3Lffn0tZIcMKClb8AckSU2A</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Lu, Kuan</creator><creator>Chen, Yushu</creator><creator>Hou, Lei</creator><general>Shanghai University</general><general>Springer Nature B.V</general><general>School of Energy Science and Engineering, Harbin Institute of Technology,Harbin 150001, China</general><general>School of Astronautics, Harbin Institute of Technology, Harbin 150001, China</general><general>College of Engineering, The University of Iowa, Iowa City, IA 52242, U.S.A.%School of Astronautics, Harbin Institute of Technology, Harbin 150001, China%School of Astronautics, Harbin Institute of Technology, Harbin 150001, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20170901</creationdate><title>Bifurcation characteristics analysis of a class of nonlinear dynamical systems based on singularity theory</title><author>Lu, Kuan ; Chen, Yushu ; Hou, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-7a00ca907c8909af925b1ff6f699e450f76d57eaea0d079212829d4b9f4780b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applications of Mathematics</topic><topic>Arches</topic><topic>Bifurcation theory</topic><topic>Classical Mechanics</topic><topic>Dynamical systems</topic><topic>Eigenvalues</topic><topic>Engineering</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear dynamics</topic><topic>Partial Differential Equations</topic><topic>Physical properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Kuan</creatorcontrib><creatorcontrib>Chen, Yushu</creatorcontrib><creatorcontrib>Hou, Lei</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Kuan</au><au>Chen, Yushu</au><au>Hou, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bifurcation characteristics analysis of a class of nonlinear dynamical systems based on singularity theory</atitle><jtitle>Applied mathematics and mechanics</jtitle><stitle>Appl. Math. Mech.-Engl. Ed</stitle><addtitle>Applied Mathematics and Mechanics(English Edition)</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>38</volume><issue>9</issue><spage>1233</spage><epage>1246</epage><pages>1233-1246</pages><issn>0253-4827</issn><eissn>1573-2754</eissn><abstract>A method for seeking main bifurcation parameters of a class of nonlinear dynamical systems is proposed. The method is based on the effects of parametric varia- tion of dynamical systems on eigenvalues of the Frechet matrix. The singularity theory is used to study the engineering unfolding (EU) and the universal unfolding (UU) of an arch structure model, respectively. Unfolding parameters of EU are combination of concerned physical parameters in actual engineering, and equivalence of unfolding parameters and physical parameters is verified. Transient sets and bifurcation behaviors of EU and UU are compared to illustrate that EU can reflect main bifurcation characteristics of non- linear systems in engineering. The results improve the understanding and the scope of applicability of EU in actual engineering systems when UU is difficult to be obtained.</abstract><cop>Shanghai</cop><pub>Shanghai University</pub><doi>10.1007/s10483-017-2234-8</doi><tpages>14</tpages><edition>English ed.</edition></addata></record>
fulltext fulltext
identifier ISSN: 0253-4827
ispartof Applied mathematics and mechanics, 2017-09, Vol.38 (9), p.1233-1246
issn 0253-4827
1573-2754
language eng
recordid cdi_wanfang_journals_yysxhlx_e201709004
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Arches
Bifurcation theory
Classical Mechanics
Dynamical systems
Eigenvalues
Engineering
Fluid- and Aerodynamics
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Nonlinear dynamics
Partial Differential Equations
Physical properties
title Bifurcation characteristics analysis of a class of nonlinear dynamical systems based on singularity theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A02%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bifurcation%20characteristics%20analysis%20of%20a%20class%20of%20nonlinear%20dynamical%20systems%20based%20on%20singularity%20theory&rft.jtitle=Applied%20mathematics%20and%20mechanics&rft.au=Lu,%20Kuan&rft.date=2017-09-01&rft.volume=38&rft.issue=9&rft.spage=1233&rft.epage=1246&rft.pages=1233-1246&rft.issn=0253-4827&rft.eissn=1573-2754&rft_id=info:doi/10.1007/s10483-017-2234-8&rft_dat=%3Cwanfang_jour_proqu%3Eyysxhlx_e201709004%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1923755045&rft_id=info:pmid/&rft_cqvip_id=673092808&rft_wanfj_id=yysxhlx_e201709004&rfr_iscdi=true