Free vibration analysis of functionally graded material beams based on Levinson beam theory
Free vibration response of functionally graded material (FGM) beams is studied based on the Levinson beam theory (LBT). Equations of motion of an FGM beam are derived by directly integrating the stress-form equations of elasticity along the beam depth with the inertial resultant forces related to th...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and mechanics 2016-07, Vol.37 (7), p.861-878 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 878 |
---|---|
container_issue | 7 |
container_start_page | 861 |
container_title | Applied mathematics and mechanics |
container_volume | 37 |
creator | Wang, Xuan Li, Shirong |
description | Free vibration response of functionally graded material (FGM) beams is studied based on the Levinson beam theory (LBT). Equations of motion of an FGM beam are derived by directly integrating the stress-form equations of elasticity along the beam depth with the inertial resultant forces related to the included coupling and higherorder shear strain. Assuming harmonic response, governing equations of the free vibration of the FGM beam are reduced to a standard system of second-order ordinary differential equations associated with boundary conditions in terms of shape functions related to axial and transverse displacements and the rotational angle. By a shooting method to solve the two-point boundary value problem of the three coupled ordinary differential equations, free vibration response of thick FGM beams is obtained numerically. Particularly, for a beam with simply supported edges, the natural frequency of an FGM Levinson beam is analytically derived in terms of the natural frequency of a corresponding homogenous Euler-Bernoulli beam. As the material properties are assumed to vary through the depth according to the power-law functions, the numerical results of frequencies are presented to examine the effects of the material gradient parameter, the length-to-depth ratio, and the boundary conditions on the vibration response. |
doi_str_mv | 10.1007/s10483-016-2094-9 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_yysxhlx_e201607003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>669311379</cqvip_id><wanfj_id>yysxhlx_e201607003</wanfj_id><sourcerecordid>yysxhlx_e201607003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-2d89f19eb9b1f246c0c9291497d78df8e1a8e61c6b62cb43ce39e3b00d29401d3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANwsjkiB9U_i-IgqCkiVuMCJg-U4dpoqTcBOS_P2OEoFN067Gs23sxqErgncEQBxHwjwnCVAsoSC5Ik8QTOSCpZQkfJTNAOasoTnVJyjixA2AMAF5zP0sfTW4n1deN3XXYt1q5sh1AF3Drtda0ZRN82AK69LW-Kt7q2vdYMLq7cBFzpEMXIru6_bEJdRx_3adn64RGdON8FeHeccvS8f3xbPyer16WXxsEoMS6FPaJlLR6QtZEEc5ZkBI6kkXIpS5KXLLdG5zYjJioyagjNjmbSsACip5EBKNke3091v3TrdVmrT7Xz8OqhhCId1c1CWxmJAALBoJpPZ-C4Eb5369PVW-0ERUGOVaqpSRUKNVSoZGToxIXrbyvq_hP-gm2PQumurr8j9JmWZZIQwIdkP5ZmDDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Free vibration analysis of functionally graded material beams based on Levinson beam theory</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Xuan ; Li, Shirong</creator><creatorcontrib>Wang, Xuan ; Li, Shirong</creatorcontrib><description>Free vibration response of functionally graded material (FGM) beams is studied based on the Levinson beam theory (LBT). Equations of motion of an FGM beam are derived by directly integrating the stress-form equations of elasticity along the beam depth with the inertial resultant forces related to the included coupling and higherorder shear strain. Assuming harmonic response, governing equations of the free vibration of the FGM beam are reduced to a standard system of second-order ordinary differential equations associated with boundary conditions in terms of shape functions related to axial and transverse displacements and the rotational angle. By a shooting method to solve the two-point boundary value problem of the three coupled ordinary differential equations, free vibration response of thick FGM beams is obtained numerically. Particularly, for a beam with simply supported edges, the natural frequency of an FGM Levinson beam is analytically derived in terms of the natural frequency of a corresponding homogenous Euler-Bernoulli beam. As the material properties are assumed to vary through the depth according to the power-law functions, the numerical results of frequencies are presented to examine the effects of the material gradient parameter, the length-to-depth ratio, and the boundary conditions on the vibration response.</description><identifier>ISSN: 0253-4827</identifier><identifier>EISSN: 1573-2754</identifier><identifier>DOI: 10.1007/s10483-016-2094-9</identifier><language>eng</language><publisher>Shanghai: Shanghai University</publisher><subject>Applications of Mathematics ; Classical Mechanics ; Fluid- and Aerodynamics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations</subject><ispartof>Applied mathematics and mechanics, 2016-07, Vol.37 (7), p.861-878</ispartof><rights>Shanghai University and Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-2d89f19eb9b1f246c0c9291497d78df8e1a8e61c6b62cb43ce39e3b00d29401d3</citedby><cites>FETCH-LOGICAL-c350t-2d89f19eb9b1f246c0c9291497d78df8e1a8e61c6b62cb43ce39e3b00d29401d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86647X/86647X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10483-016-2094-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10483-016-2094-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wang, Xuan</creatorcontrib><creatorcontrib>Li, Shirong</creatorcontrib><title>Free vibration analysis of functionally graded material beams based on Levinson beam theory</title><title>Applied mathematics and mechanics</title><addtitle>Appl. Math. Mech.-Engl. Ed</addtitle><addtitle>Applied Mathematics and Mechanics(English Edition)</addtitle><description>Free vibration response of functionally graded material (FGM) beams is studied based on the Levinson beam theory (LBT). Equations of motion of an FGM beam are derived by directly integrating the stress-form equations of elasticity along the beam depth with the inertial resultant forces related to the included coupling and higherorder shear strain. Assuming harmonic response, governing equations of the free vibration of the FGM beam are reduced to a standard system of second-order ordinary differential equations associated with boundary conditions in terms of shape functions related to axial and transverse displacements and the rotational angle. By a shooting method to solve the two-point boundary value problem of the three coupled ordinary differential equations, free vibration response of thick FGM beams is obtained numerically. Particularly, for a beam with simply supported edges, the natural frequency of an FGM Levinson beam is analytically derived in terms of the natural frequency of a corresponding homogenous Euler-Bernoulli beam. As the material properties are assumed to vary through the depth according to the power-law functions, the numerical results of frequencies are presented to examine the effects of the material gradient parameter, the length-to-depth ratio, and the boundary conditions on the vibration response.</description><subject>Applications of Mathematics</subject><subject>Classical Mechanics</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><issn>0253-4827</issn><issn>1573-2754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwANwsjkiB9U_i-IgqCkiVuMCJg-U4dpoqTcBOS_P2OEoFN067Gs23sxqErgncEQBxHwjwnCVAsoSC5Ik8QTOSCpZQkfJTNAOasoTnVJyjixA2AMAF5zP0sfTW4n1deN3XXYt1q5sh1AF3Drtda0ZRN82AK69LW-Kt7q2vdYMLq7cBFzpEMXIru6_bEJdRx_3adn64RGdON8FeHeccvS8f3xbPyer16WXxsEoMS6FPaJlLR6QtZEEc5ZkBI6kkXIpS5KXLLdG5zYjJioyagjNjmbSsACip5EBKNke3091v3TrdVmrT7Xz8OqhhCId1c1CWxmJAALBoJpPZ-C4Eb5369PVW-0ERUGOVaqpSRUKNVSoZGToxIXrbyvq_hP-gm2PQumurr8j9JmWZZIQwIdkP5ZmDDg</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Wang, Xuan</creator><creator>Li, Shirong</creator><general>Shanghai University</general><general>School of Hydraulic, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, Jiangsu Province, China%School of Hydraulic, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, Jiangsu Province, China</general><general>School of Civil Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu Province, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20160701</creationdate><title>Free vibration analysis of functionally graded material beams based on Levinson beam theory</title><author>Wang, Xuan ; Li, Shirong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-2d89f19eb9b1f246c0c9291497d78df8e1a8e61c6b62cb43ce39e3b00d29401d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applications of Mathematics</topic><topic>Classical Mechanics</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xuan</creatorcontrib><creatorcontrib>Li, Shirong</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xuan</au><au>Li, Shirong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Free vibration analysis of functionally graded material beams based on Levinson beam theory</atitle><jtitle>Applied mathematics and mechanics</jtitle><stitle>Appl. Math. Mech.-Engl. Ed</stitle><addtitle>Applied Mathematics and Mechanics(English Edition)</addtitle><date>2016-07-01</date><risdate>2016</risdate><volume>37</volume><issue>7</issue><spage>861</spage><epage>878</epage><pages>861-878</pages><issn>0253-4827</issn><eissn>1573-2754</eissn><abstract>Free vibration response of functionally graded material (FGM) beams is studied based on the Levinson beam theory (LBT). Equations of motion of an FGM beam are derived by directly integrating the stress-form equations of elasticity along the beam depth with the inertial resultant forces related to the included coupling and higherorder shear strain. Assuming harmonic response, governing equations of the free vibration of the FGM beam are reduced to a standard system of second-order ordinary differential equations associated with boundary conditions in terms of shape functions related to axial and transverse displacements and the rotational angle. By a shooting method to solve the two-point boundary value problem of the three coupled ordinary differential equations, free vibration response of thick FGM beams is obtained numerically. Particularly, for a beam with simply supported edges, the natural frequency of an FGM Levinson beam is analytically derived in terms of the natural frequency of a corresponding homogenous Euler-Bernoulli beam. As the material properties are assumed to vary through the depth according to the power-law functions, the numerical results of frequencies are presented to examine the effects of the material gradient parameter, the length-to-depth ratio, and the boundary conditions on the vibration response.</abstract><cop>Shanghai</cop><pub>Shanghai University</pub><doi>10.1007/s10483-016-2094-9</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-4827 |
ispartof | Applied mathematics and mechanics, 2016-07, Vol.37 (7), p.861-878 |
issn | 0253-4827 1573-2754 |
language | eng |
recordid | cdi_wanfang_journals_yysxhlx_e201607003 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Classical Mechanics Fluid- and Aerodynamics Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Partial Differential Equations |
title | Free vibration analysis of functionally graded material beams based on Levinson beam theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A58%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Free%20vibration%20analysis%20of%20functionally%20graded%20material%20beams%20based%20on%20Levinson%20beam%20theory&rft.jtitle=Applied%20mathematics%20and%20mechanics&rft.au=Wang,%20Xuan&rft.date=2016-07-01&rft.volume=37&rft.issue=7&rft.spage=861&rft.epage=878&rft.pages=861-878&rft.issn=0253-4827&rft.eissn=1573-2754&rft_id=info:doi/10.1007/s10483-016-2094-9&rft_dat=%3Cwanfang_jour_cross%3Eyysxhlx_e201607003%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=669311379&rft_wanfj_id=yysxhlx_e201607003&rfr_iscdi=true |