Dynamic bifurcation of the n-dimensional complex Swift-Hohenberg equation
This paper is concerned with the bifurcation of a complex Swift-Hohenberg equation. The attractor bifurcation of the complex Swift-Hohenberg equation on a one- dimensional domain (0, L) is investigated. It is shown that the n-dimensional complex Swift-Hohenberg equation bifurcates from the trivial s...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and mechanics 2010-06, Vol.31 (6), p.739-750 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 750 |
---|---|
container_issue | 6 |
container_start_page | 739 |
container_title | Applied mathematics and mechanics |
container_volume | 31 |
creator | 肖庆坤 高洪俊 |
description | This paper is concerned with the bifurcation of a complex Swift-Hohenberg equation. The attractor bifurcation of the complex Swift-Hohenberg equation on a one- dimensional domain (0, L) is investigated. It is shown that the n-dimensional complex Swift-Hohenberg equation bifurcates from the trivial solution to an attractor under the Dirichlet boundary condition on a general domain and under a periodic boundary condition when the bifurcation parameter crosses some critical values. The stability property of the bifurcation attractor is analyzed. |
doi_str_mv | 10.1007/s10483-010-1308-6 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_yysxhlx_e201006008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>34122079</cqvip_id><wanfj_id>yysxhlx_e201006008</wanfj_id><sourcerecordid>yysxhlx_e201006008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-dd6c8e30a1c82ef6798ef77f5ffe2e99f4f4f59dc3236cd5d624117b010a89013</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi0EEkvhB3CLuCAhuYw_YjtHVAqtVIkDcLa8zng3JbF37UTd_fe4pFJvyAfLo-fxzLyEvGdwyQD058JAGkGBAWUCDFUvyIa1WlCuW_mSbIC3gkrD9WvyppR7AJBayg25_XqObhp8sx3Ckr2bhxSbFJp5j02k_TBhLLXkxsan6TDiqfn5MISZ3qQ9xi3mXYPH5Z_1lrwKbiz47um-IL-_Xf-6uqF3P77fXn25o14IOdO-V96gAMe84RiU7gwGrUMbAnLsuiDrabveCy6U79teccmY3tbNnOmAiQvyaf33wcXg4s7epyXXAYs9n8tpP54s8gqDAjAV_rjCh5yOC5bZTkPxOI4uYlqKNW2rtDIGKslW0udUSsZgD3mYXD5bBvYxYrtGbOHxXSO2qjp8dUpl4w7z8yz_kz48NdqnuDtWz26d_xOGEa2QjHPQnfgLqwqKCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855676880</pqid></control><display><type>article</type><title>Dynamic bifurcation of the n-dimensional complex Swift-Hohenberg equation</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>肖庆坤 高洪俊</creator><creatorcontrib>肖庆坤 高洪俊</creatorcontrib><description>This paper is concerned with the bifurcation of a complex Swift-Hohenberg equation. The attractor bifurcation of the complex Swift-Hohenberg equation on a one- dimensional domain (0, L) is investigated. It is shown that the n-dimensional complex Swift-Hohenberg equation bifurcates from the trivial solution to an attractor under the Dirichlet boundary condition on a general domain and under a periodic boundary condition when the bifurcation parameter crosses some critical values. The stability property of the bifurcation attractor is analyzed.</description><identifier>ISSN: 0253-4827</identifier><identifier>EISSN: 1573-2754</identifier><identifier>DOI: 10.1007/s10483-010-1308-6</identifier><language>eng</language><publisher>Heidelberg: Shanghai University Press</publisher><subject>Applications of Mathematics ; Bifurcations ; Classical Mechanics ; Dynamics ; Fluid- and Aerodynamics ; Mathematical analysis ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations</subject><ispartof>Applied mathematics and mechanics, 2010-06, Vol.31 (6), p.739-750</ispartof><rights>Shanghai University and Springer-Verlag Berlin Heidelberg 2010</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c334t-dd6c8e30a1c82ef6798ef77f5ffe2e99f4f4f59dc3236cd5d624117b010a89013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86647X/86647X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10483-010-1308-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10483-010-1308-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>肖庆坤 高洪俊</creatorcontrib><title>Dynamic bifurcation of the n-dimensional complex Swift-Hohenberg equation</title><title>Applied mathematics and mechanics</title><addtitle>Appl. Math. Mech.-Engl. Ed</addtitle><addtitle>Applied Mathematics and Mechanics(English Edition)</addtitle><description>This paper is concerned with the bifurcation of a complex Swift-Hohenberg equation. The attractor bifurcation of the complex Swift-Hohenberg equation on a one- dimensional domain (0, L) is investigated. It is shown that the n-dimensional complex Swift-Hohenberg equation bifurcates from the trivial solution to an attractor under the Dirichlet boundary condition on a general domain and under a periodic boundary condition when the bifurcation parameter crosses some critical values. The stability property of the bifurcation attractor is analyzed.</description><subject>Applications of Mathematics</subject><subject>Bifurcations</subject><subject>Classical Mechanics</subject><subject>Dynamics</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical analysis</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><issn>0253-4827</issn><issn>1573-2754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1v1DAQhi0EEkvhB3CLuCAhuYw_YjtHVAqtVIkDcLa8zng3JbF37UTd_fe4pFJvyAfLo-fxzLyEvGdwyQD058JAGkGBAWUCDFUvyIa1WlCuW_mSbIC3gkrD9WvyppR7AJBayg25_XqObhp8sx3Ckr2bhxSbFJp5j02k_TBhLLXkxsan6TDiqfn5MISZ3qQ9xi3mXYPH5Z_1lrwKbiz47um-IL-_Xf-6uqF3P77fXn25o14IOdO-V96gAMe84RiU7gwGrUMbAnLsuiDrabveCy6U79teccmY3tbNnOmAiQvyaf33wcXg4s7epyXXAYs9n8tpP54s8gqDAjAV_rjCh5yOC5bZTkPxOI4uYlqKNW2rtDIGKslW0udUSsZgD3mYXD5bBvYxYrtGbOHxXSO2qjp8dUpl4w7z8yz_kz48NdqnuDtWz26d_xOGEa2QjHPQnfgLqwqKCQ</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>肖庆坤 高洪俊</creator><general>Shanghai University Press</general><general>Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University,Nanjing 210046, P. R. China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20100601</creationdate><title>Dynamic bifurcation of the n-dimensional complex Swift-Hohenberg equation</title><author>肖庆坤 高洪俊</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-dd6c8e30a1c82ef6798ef77f5ffe2e99f4f4f59dc3236cd5d624117b010a89013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applications of Mathematics</topic><topic>Bifurcations</topic><topic>Classical Mechanics</topic><topic>Dynamics</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical analysis</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>肖庆坤 高洪俊</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>肖庆坤 高洪俊</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic bifurcation of the n-dimensional complex Swift-Hohenberg equation</atitle><jtitle>Applied mathematics and mechanics</jtitle><stitle>Appl. Math. Mech.-Engl. Ed</stitle><addtitle>Applied Mathematics and Mechanics(English Edition)</addtitle><date>2010-06-01</date><risdate>2010</risdate><volume>31</volume><issue>6</issue><spage>739</spage><epage>750</epage><pages>739-750</pages><issn>0253-4827</issn><eissn>1573-2754</eissn><abstract>This paper is concerned with the bifurcation of a complex Swift-Hohenberg equation. The attractor bifurcation of the complex Swift-Hohenberg equation on a one- dimensional domain (0, L) is investigated. It is shown that the n-dimensional complex Swift-Hohenberg equation bifurcates from the trivial solution to an attractor under the Dirichlet boundary condition on a general domain and under a periodic boundary condition when the bifurcation parameter crosses some critical values. The stability property of the bifurcation attractor is analyzed.</abstract><cop>Heidelberg</cop><pub>Shanghai University Press</pub><doi>10.1007/s10483-010-1308-6</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-4827 |
ispartof | Applied mathematics and mechanics, 2010-06, Vol.31 (6), p.739-750 |
issn | 0253-4827 1573-2754 |
language | eng |
recordid | cdi_wanfang_journals_yysxhlx_e201006008 |
source | SpringerLink Journals; Alma/SFX Local Collection |
subjects | Applications of Mathematics Bifurcations Classical Mechanics Dynamics Fluid- and Aerodynamics Mathematical analysis Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Partial Differential Equations |
title | Dynamic bifurcation of the n-dimensional complex Swift-Hohenberg equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T08%3A49%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20bifurcation%20of%20the%20n-dimensional%20complex%20Swift-Hohenberg%20equation&rft.jtitle=Applied%20mathematics%20and%20mechanics&rft.au=%E8%82%96%E5%BA%86%E5%9D%A4%20%E9%AB%98%E6%B4%AA%E4%BF%8A&rft.date=2010-06-01&rft.volume=31&rft.issue=6&rft.spage=739&rft.epage=750&rft.pages=739-750&rft.issn=0253-4827&rft.eissn=1573-2754&rft_id=info:doi/10.1007/s10483-010-1308-6&rft_dat=%3Cwanfang_jour_proqu%3Eyysxhlx_e201006008%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=855676880&rft_id=info:pmid/&rft_cqvip_id=34122079&rft_wanfj_id=yysxhlx_e201006008&rfr_iscdi=true |