Uniform attractors for non-autonomous Klein-Gordon-Schrödinger lattice systems

The existence of a compact uniform attractor for a family of processes corresponding to the dissipative non-autonomous Klein-Gordon-Schrödinger lattice dynamical system is proved. An upper bound of the Kolmogorov entropy of the compact uniform attractor is obtained, and an upper semicontinuity of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and mechanics 2009-12, Vol.30 (12), p.1597-1607
Hauptverfasser: Huang, Jin-wu, Han, Xiao-ying, Zhou, Sheng-fan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1607
container_issue 12
container_start_page 1597
container_title Applied mathematics and mechanics
container_volume 30
creator Huang, Jin-wu
Han, Xiao-ying
Zhou, Sheng-fan
description The existence of a compact uniform attractor for a family of processes corresponding to the dissipative non-autonomous Klein-Gordon-Schrödinger lattice dynamical system is proved. An upper bound of the Kolmogorov entropy of the compact uniform attractor is obtained, and an upper semicontinuity of the compact uniform attractor is established.
doi_str_mv 10.1007/s10483-009-1211-z
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_yysxhlx_e200912011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>yysxhlx_e200912011</wanfj_id><sourcerecordid>yysxhlx_e200912011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-bec9703d2484da2da9567b1f1a092d9e1ffe3ab54fb71afb1c83ad55f0093b653</originalsourceid><addsrcrecordid>eNp1kM9KAzEQxoMoWKsP4G2PIkQz-dN0j1K0ioUetOeQ3U3aLbtJTbbY9sF8AV_MlBU8eRpm-H0z830IXQO5A0LkfQTCxwwTkmOgAPhwggYgJMNUCn6KBoQKhvmYynN0EeOaEMIl5wM0X7ja-tBmuuuCLjsfYpb6zHmH9bbzzrd-G7PXxtQOT32o0vytXIXvr6p2SxOyJgnr0mRxHzvTxkt0ZnUTzdVvHaLF0-P75BnP5tOXycMMl0yMOlyYMpeEVZSPeaVppXMxkgVY0CSnVW7AWsN0IbgtJGhbQDlmuhLCJoOsGAk2RLf93k_trHZLtfbb4NJFtd_H3arZKUMTC5QAJPimhzfBf2xN7FRbx9I0jXYmuVMwkkAlpNMJhR4tg48xGKs2oW512Csg6pi06pNWabk6Jq0OSUN7TUzsMZS_Z_4X_QAEJIO4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671271092</pqid></control><display><type>article</type><title>Uniform attractors for non-autonomous Klein-Gordon-Schrödinger lattice systems</title><source>Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Huang, Jin-wu ; Han, Xiao-ying ; Zhou, Sheng-fan</creator><creatorcontrib>Huang, Jin-wu ; Han, Xiao-ying ; Zhou, Sheng-fan</creatorcontrib><description>The existence of a compact uniform attractor for a family of processes corresponding to the dissipative non-autonomous Klein-Gordon-Schrödinger lattice dynamical system is proved. An upper bound of the Kolmogorov entropy of the compact uniform attractor is obtained, and an upper semicontinuity of the compact uniform attractor is established.</description><identifier>ISSN: 0253-4827</identifier><identifier>EISSN: 1573-2754</identifier><identifier>DOI: 10.1007/s10483-009-1211-z</identifier><language>eng</language><publisher>Heidelberg: Shanghai University Press</publisher><subject>Applications of Mathematics ; Classical Mechanics ; Dissipation ; Dynamical systems ; Dynamics ; Entropy ; Fluid- and Aerodynamics ; Lattices ; Mathematical analysis ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Upper bounds</subject><ispartof>Applied mathematics and mechanics, 2009-12, Vol.30 (12), p.1597-1607</ispartof><rights>Shanghai University and Springer Berlin Heidelberg 2009</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-bec9703d2484da2da9567b1f1a092d9e1ffe3ab54fb71afb1c83ad55f0093b653</citedby><cites>FETCH-LOGICAL-c356t-bec9703d2484da2da9567b1f1a092d9e1ffe3ab54fb71afb1c83ad55f0093b653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/yysxhlx-e/yysxhlx-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10483-009-1211-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10483-009-1211-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Huang, Jin-wu</creatorcontrib><creatorcontrib>Han, Xiao-ying</creatorcontrib><creatorcontrib>Zhou, Sheng-fan</creatorcontrib><title>Uniform attractors for non-autonomous Klein-Gordon-Schrödinger lattice systems</title><title>Applied mathematics and mechanics</title><addtitle>Appl. Math. Mech.-Engl. Ed</addtitle><description>The existence of a compact uniform attractor for a family of processes corresponding to the dissipative non-autonomous Klein-Gordon-Schrödinger lattice dynamical system is proved. An upper bound of the Kolmogorov entropy of the compact uniform attractor is obtained, and an upper semicontinuity of the compact uniform attractor is established.</description><subject>Applications of Mathematics</subject><subject>Classical Mechanics</subject><subject>Dissipation</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Entropy</subject><subject>Fluid- and Aerodynamics</subject><subject>Lattices</subject><subject>Mathematical analysis</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Upper bounds</subject><issn>0253-4827</issn><issn>1573-2754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kM9KAzEQxoMoWKsP4G2PIkQz-dN0j1K0ioUetOeQ3U3aLbtJTbbY9sF8AV_MlBU8eRpm-H0z830IXQO5A0LkfQTCxwwTkmOgAPhwggYgJMNUCn6KBoQKhvmYynN0EeOaEMIl5wM0X7ja-tBmuuuCLjsfYpb6zHmH9bbzzrd-G7PXxtQOT32o0vytXIXvr6p2SxOyJgnr0mRxHzvTxkt0ZnUTzdVvHaLF0-P75BnP5tOXycMMl0yMOlyYMpeEVZSPeaVppXMxkgVY0CSnVW7AWsN0IbgtJGhbQDlmuhLCJoOsGAk2RLf93k_trHZLtfbb4NJFtd_H3arZKUMTC5QAJPimhzfBf2xN7FRbx9I0jXYmuVMwkkAlpNMJhR4tg48xGKs2oW512Csg6pi06pNWabk6Jq0OSUN7TUzsMZS_Z_4X_QAEJIO4</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Huang, Jin-wu</creator><creator>Han, Xiao-ying</creator><creator>Zhou, Sheng-fan</creator><general>Shanghai University Press</general><general>Department of Applied Mathematics, Shanghai Normal University,Shanghai 200234, P. R. China%Department of Mathematics and Statistics, Auburn University, Auburn, Alabama 36849, United States of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20091201</creationdate><title>Uniform attractors for non-autonomous Klein-Gordon-Schrödinger lattice systems</title><author>Huang, Jin-wu ; Han, Xiao-ying ; Zhou, Sheng-fan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-bec9703d2484da2da9567b1f1a092d9e1ffe3ab54fb71afb1c83ad55f0093b653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applications of Mathematics</topic><topic>Classical Mechanics</topic><topic>Dissipation</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Entropy</topic><topic>Fluid- and Aerodynamics</topic><topic>Lattices</topic><topic>Mathematical analysis</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jin-wu</creatorcontrib><creatorcontrib>Han, Xiao-ying</creatorcontrib><creatorcontrib>Zhou, Sheng-fan</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jin-wu</au><au>Han, Xiao-ying</au><au>Zhou, Sheng-fan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform attractors for non-autonomous Klein-Gordon-Schrödinger lattice systems</atitle><jtitle>Applied mathematics and mechanics</jtitle><stitle>Appl. Math. Mech.-Engl. Ed</stitle><date>2009-12-01</date><risdate>2009</risdate><volume>30</volume><issue>12</issue><spage>1597</spage><epage>1607</epage><pages>1597-1607</pages><issn>0253-4827</issn><eissn>1573-2754</eissn><abstract>The existence of a compact uniform attractor for a family of processes corresponding to the dissipative non-autonomous Klein-Gordon-Schrödinger lattice dynamical system is proved. An upper bound of the Kolmogorov entropy of the compact uniform attractor is obtained, and an upper semicontinuity of the compact uniform attractor is established.</abstract><cop>Heidelberg</cop><pub>Shanghai University Press</pub><doi>10.1007/s10483-009-1211-z</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0253-4827
ispartof Applied mathematics and mechanics, 2009-12, Vol.30 (12), p.1597-1607
issn 0253-4827
1573-2754
language eng
recordid cdi_wanfang_journals_yysxhlx_e200912011
source Springer Journals; Alma/SFX Local Collection
subjects Applications of Mathematics
Classical Mechanics
Dissipation
Dynamical systems
Dynamics
Entropy
Fluid- and Aerodynamics
Lattices
Mathematical analysis
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Partial Differential Equations
Upper bounds
title Uniform attractors for non-autonomous Klein-Gordon-Schrödinger lattice systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A51%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20attractors%20for%20non-autonomous%20Klein-Gordon-Schr%C3%B6dinger%20lattice%20systems&rft.jtitle=Applied%20mathematics%20and%20mechanics&rft.au=Huang,%20Jin-wu&rft.date=2009-12-01&rft.volume=30&rft.issue=12&rft.spage=1597&rft.epage=1607&rft.pages=1597-1607&rft.issn=0253-4827&rft.eissn=1573-2754&rft_id=info:doi/10.1007/s10483-009-1211-z&rft_dat=%3Cwanfang_jour_proqu%3Eyysxhlx_e200912011%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671271092&rft_id=info:pmid/&rft_wanfj_id=yysxhlx_e200912011&rfr_iscdi=true