Uniform attractors for non-autonomous Klein-Gordon-Schrödinger lattice systems
The existence of a compact uniform attractor for a family of processes corresponding to the dissipative non-autonomous Klein-Gordon-Schrödinger lattice dynamical system is proved. An upper bound of the Kolmogorov entropy of the compact uniform attractor is obtained, and an upper semicontinuity of th...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and mechanics 2009-12, Vol.30 (12), p.1597-1607 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1607 |
---|---|
container_issue | 12 |
container_start_page | 1597 |
container_title | Applied mathematics and mechanics |
container_volume | 30 |
creator | Huang, Jin-wu Han, Xiao-ying Zhou, Sheng-fan |
description | The existence of a compact uniform attractor for a family of processes corresponding to the dissipative non-autonomous Klein-Gordon-Schrödinger lattice dynamical system is proved. An upper bound of the Kolmogorov entropy of the compact uniform attractor is obtained, and an upper semicontinuity of the compact uniform attractor is established. |
doi_str_mv | 10.1007/s10483-009-1211-z |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_yysxhlx_e200912011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>yysxhlx_e200912011</wanfj_id><sourcerecordid>yysxhlx_e200912011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-bec9703d2484da2da9567b1f1a092d9e1ffe3ab54fb71afb1c83ad55f0093b653</originalsourceid><addsrcrecordid>eNp1kM9KAzEQxoMoWKsP4G2PIkQz-dN0j1K0ioUetOeQ3U3aLbtJTbbY9sF8AV_MlBU8eRpm-H0z830IXQO5A0LkfQTCxwwTkmOgAPhwggYgJMNUCn6KBoQKhvmYynN0EeOaEMIl5wM0X7ja-tBmuuuCLjsfYpb6zHmH9bbzzrd-G7PXxtQOT32o0vytXIXvr6p2SxOyJgnr0mRxHzvTxkt0ZnUTzdVvHaLF0-P75BnP5tOXycMMl0yMOlyYMpeEVZSPeaVppXMxkgVY0CSnVW7AWsN0IbgtJGhbQDlmuhLCJoOsGAk2RLf93k_trHZLtfbb4NJFtd_H3arZKUMTC5QAJPimhzfBf2xN7FRbx9I0jXYmuVMwkkAlpNMJhR4tg48xGKs2oW512Csg6pi06pNWabk6Jq0OSUN7TUzsMZS_Z_4X_QAEJIO4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671271092</pqid></control><display><type>article</type><title>Uniform attractors for non-autonomous Klein-Gordon-Schrödinger lattice systems</title><source>Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Huang, Jin-wu ; Han, Xiao-ying ; Zhou, Sheng-fan</creator><creatorcontrib>Huang, Jin-wu ; Han, Xiao-ying ; Zhou, Sheng-fan</creatorcontrib><description>The existence of a compact uniform attractor for a family of processes corresponding to the dissipative non-autonomous Klein-Gordon-Schrödinger lattice dynamical system is proved. An upper bound of the Kolmogorov entropy of the compact uniform attractor is obtained, and an upper semicontinuity of the compact uniform attractor is established.</description><identifier>ISSN: 0253-4827</identifier><identifier>EISSN: 1573-2754</identifier><identifier>DOI: 10.1007/s10483-009-1211-z</identifier><language>eng</language><publisher>Heidelberg: Shanghai University Press</publisher><subject>Applications of Mathematics ; Classical Mechanics ; Dissipation ; Dynamical systems ; Dynamics ; Entropy ; Fluid- and Aerodynamics ; Lattices ; Mathematical analysis ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Upper bounds</subject><ispartof>Applied mathematics and mechanics, 2009-12, Vol.30 (12), p.1597-1607</ispartof><rights>Shanghai University and Springer Berlin Heidelberg 2009</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-bec9703d2484da2da9567b1f1a092d9e1ffe3ab54fb71afb1c83ad55f0093b653</citedby><cites>FETCH-LOGICAL-c356t-bec9703d2484da2da9567b1f1a092d9e1ffe3ab54fb71afb1c83ad55f0093b653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/yysxhlx-e/yysxhlx-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10483-009-1211-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10483-009-1211-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Huang, Jin-wu</creatorcontrib><creatorcontrib>Han, Xiao-ying</creatorcontrib><creatorcontrib>Zhou, Sheng-fan</creatorcontrib><title>Uniform attractors for non-autonomous Klein-Gordon-Schrödinger lattice systems</title><title>Applied mathematics and mechanics</title><addtitle>Appl. Math. Mech.-Engl. Ed</addtitle><description>The existence of a compact uniform attractor for a family of processes corresponding to the dissipative non-autonomous Klein-Gordon-Schrödinger lattice dynamical system is proved. An upper bound of the Kolmogorov entropy of the compact uniform attractor is obtained, and an upper semicontinuity of the compact uniform attractor is established.</description><subject>Applications of Mathematics</subject><subject>Classical Mechanics</subject><subject>Dissipation</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Entropy</subject><subject>Fluid- and Aerodynamics</subject><subject>Lattices</subject><subject>Mathematical analysis</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Upper bounds</subject><issn>0253-4827</issn><issn>1573-2754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kM9KAzEQxoMoWKsP4G2PIkQz-dN0j1K0ioUetOeQ3U3aLbtJTbbY9sF8AV_MlBU8eRpm-H0z830IXQO5A0LkfQTCxwwTkmOgAPhwggYgJMNUCn6KBoQKhvmYynN0EeOaEMIl5wM0X7ja-tBmuuuCLjsfYpb6zHmH9bbzzrd-G7PXxtQOT32o0vytXIXvr6p2SxOyJgnr0mRxHzvTxkt0ZnUTzdVvHaLF0-P75BnP5tOXycMMl0yMOlyYMpeEVZSPeaVppXMxkgVY0CSnVW7AWsN0IbgtJGhbQDlmuhLCJoOsGAk2RLf93k_trHZLtfbb4NJFtd_H3arZKUMTC5QAJPimhzfBf2xN7FRbx9I0jXYmuVMwkkAlpNMJhR4tg48xGKs2oW512Csg6pi06pNWabk6Jq0OSUN7TUzsMZS_Z_4X_QAEJIO4</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Huang, Jin-wu</creator><creator>Han, Xiao-ying</creator><creator>Zhou, Sheng-fan</creator><general>Shanghai University Press</general><general>Department of Applied Mathematics, Shanghai Normal University,Shanghai 200234, P. R. China%Department of Mathematics and Statistics, Auburn University, Auburn, Alabama 36849, United States of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20091201</creationdate><title>Uniform attractors for non-autonomous Klein-Gordon-Schrödinger lattice systems</title><author>Huang, Jin-wu ; Han, Xiao-ying ; Zhou, Sheng-fan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-bec9703d2484da2da9567b1f1a092d9e1ffe3ab54fb71afb1c83ad55f0093b653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applications of Mathematics</topic><topic>Classical Mechanics</topic><topic>Dissipation</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Entropy</topic><topic>Fluid- and Aerodynamics</topic><topic>Lattices</topic><topic>Mathematical analysis</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jin-wu</creatorcontrib><creatorcontrib>Han, Xiao-ying</creatorcontrib><creatorcontrib>Zhou, Sheng-fan</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jin-wu</au><au>Han, Xiao-ying</au><au>Zhou, Sheng-fan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform attractors for non-autonomous Klein-Gordon-Schrödinger lattice systems</atitle><jtitle>Applied mathematics and mechanics</jtitle><stitle>Appl. Math. Mech.-Engl. Ed</stitle><date>2009-12-01</date><risdate>2009</risdate><volume>30</volume><issue>12</issue><spage>1597</spage><epage>1607</epage><pages>1597-1607</pages><issn>0253-4827</issn><eissn>1573-2754</eissn><abstract>The existence of a compact uniform attractor for a family of processes corresponding to the dissipative non-autonomous Klein-Gordon-Schrödinger lattice dynamical system is proved. An upper bound of the Kolmogorov entropy of the compact uniform attractor is obtained, and an upper semicontinuity of the compact uniform attractor is established.</abstract><cop>Heidelberg</cop><pub>Shanghai University Press</pub><doi>10.1007/s10483-009-1211-z</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-4827 |
ispartof | Applied mathematics and mechanics, 2009-12, Vol.30 (12), p.1597-1607 |
issn | 0253-4827 1573-2754 |
language | eng |
recordid | cdi_wanfang_journals_yysxhlx_e200912011 |
source | Springer Journals; Alma/SFX Local Collection |
subjects | Applications of Mathematics Classical Mechanics Dissipation Dynamical systems Dynamics Entropy Fluid- and Aerodynamics Lattices Mathematical analysis Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Partial Differential Equations Upper bounds |
title | Uniform attractors for non-autonomous Klein-Gordon-Schrödinger lattice systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A51%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20attractors%20for%20non-autonomous%20Klein-Gordon-Schr%C3%B6dinger%20lattice%20systems&rft.jtitle=Applied%20mathematics%20and%20mechanics&rft.au=Huang,%20Jin-wu&rft.date=2009-12-01&rft.volume=30&rft.issue=12&rft.spage=1597&rft.epage=1607&rft.pages=1597-1607&rft.issn=0253-4827&rft.eissn=1573-2754&rft_id=info:doi/10.1007/s10483-009-1211-z&rft_dat=%3Cwanfang_jour_proqu%3Eyysxhlx_e200912011%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671271092&rft_id=info:pmid/&rft_wanfj_id=yysxhlx_e200912011&rfr_iscdi=true |