EFFICIENT NUMERICAL INTEGRATORS FOR HIGHLY OSCILLATORY DYNAMIC SYSTEMS BASED ON MODIFIED MAGNUS INTEGRATOR METHOD

Based on the Magnus integrator method established in linear dynamic systems, an efficiently improved modified Magnus integrator method was proposed for the second-order dynamic systems with time-dependent high frequencies. Firstly, the secondorder dynamic system was reformulated as the first-order s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and mechanics 2006-10, Vol.27 (10), p.1383-1390
1. Verfasser: 李文成 邓子辰 黄永安
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1390
container_issue 10
container_start_page 1383
container_title Applied mathematics and mechanics
container_volume 27
creator 李文成 邓子辰 黄永安
description Based on the Magnus integrator method established in linear dynamic systems, an efficiently improved modified Magnus integrator method was proposed for the second-order dynamic systems with time-dependent high frequencies. Firstly, the secondorder dynamic system was reformulated as the first-order system and the frame of reference was transfered by introducing new variables so that highly oscillatory behaviour inherits from the entries in the meantime. Then the modified Magnus integrator method based on local linearization was appropriately designed for solving the above new form and some improved also were presented. Finally, numerical examples show that the proposed methods appear to be quite adequate for integration for highly oscillatory dynamic systems including Hamiltonian systems problem with long time and effectiveness.
doi_str_mv 10.1007/s10483-006-1010-z
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_yysxhlx_e200610010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>22975819</cqvip_id><wanfj_id>yysxhlx_e200610010</wanfj_id><sourcerecordid>yysxhlx_e200610010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-e24887b7aa375f09f1ec086fbce8200498d951cfca49600108de1155502e366d3</originalsourceid><addsrcrecordid>eNpNUctO4zAUtUaDNB3gA2ZnzQYJKYMfcewsQ5q0lvKQmnTRleWmDhRCQmOqoXw9jsqC1b26Oq-rA8AfjP5hhPidxcgX1EMo8DDCyPv4AWaYceoRzvyfYIYIo54vCP8Fflv7hBDyue_PwCFJUxnLpKhhsc6TlYyjDMqiTharqC5XFUzLFVzKxTLbwLKKZZZN5w2cb4oolzGsNlWd5BW8j6pkDssC5uVcptLtebQo1tU3LZgn9bKcX4GLVnfWXH_NS7BOkzpeelm5mNy9htLwzTPEF4JvudaUsxaFLTYNEkG7bYwgLn0odiHDTdtoPwyQe1nsDMaMMUQMDYIdvQS3Z93_um91_6CehuPYO0d1Otn3x-5dGacT4InrwDdn8Os4HI7GvqmXvW1M1-neDEerBCEMCxFOSHxGNuNg7Wha9TruX_R4UhipqQp1rkI5bTVVoT4c5-8X53HoHw57F2arm-d23xlFSMiZwCH9BEU8fa8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>822518890</pqid></control><display><type>article</type><title>EFFICIENT NUMERICAL INTEGRATORS FOR HIGHLY OSCILLATORY DYNAMIC SYSTEMS BASED ON MODIFIED MAGNUS INTEGRATOR METHOD</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>李文成 邓子辰 黄永安</creator><creatorcontrib>李文成 邓子辰 黄永安</creatorcontrib><description>Based on the Magnus integrator method established in linear dynamic systems, an efficiently improved modified Magnus integrator method was proposed for the second-order dynamic systems with time-dependent high frequencies. Firstly, the secondorder dynamic system was reformulated as the first-order system and the frame of reference was transfered by introducing new variables so that highly oscillatory behaviour inherits from the entries in the meantime. Then the modified Magnus integrator method based on local linearization was appropriately designed for solving the above new form and some improved also were presented. Finally, numerical examples show that the proposed methods appear to be quite adequate for integration for highly oscillatory dynamic systems including Hamiltonian systems problem with long time and effectiveness.</description><identifier>ISSN: 0253-4827</identifier><identifier>EISSN: 1573-2754</identifier><identifier>DOI: 10.1007/s10483-006-1010-z</identifier><language>eng</language><publisher>State Key Laboratory of Structural Analysis of Industrial Equipment,Dalian University of Technology,Dalian 116023,P.R.China%School of Mechanics,Civil Engineering and Architecture,Northwestern Polytechnical University,Xi'an 710072,P.R.China</publisher><subject>Dynamical systems ; Dynamics ; Hamiltonian系统 ; High frequencies ; Integrators ; Linearization ; Magnus积分法 ; Mathematical analysis ; Mathematical models ; 动态系统 ; 非线性振动</subject><ispartof>Applied mathematics and mechanics, 2006-10, Vol.27 (10), p.1383-1390</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-e24887b7aa375f09f1ec086fbce8200498d951cfca49600108de1155502e366d3</citedby><cites>FETCH-LOGICAL-c339t-e24887b7aa375f09f1ec086fbce8200498d951cfca49600108de1155502e366d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86647X/86647X.jpg</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>李文成 邓子辰 黄永安</creatorcontrib><title>EFFICIENT NUMERICAL INTEGRATORS FOR HIGHLY OSCILLATORY DYNAMIC SYSTEMS BASED ON MODIFIED MAGNUS INTEGRATOR METHOD</title><title>Applied mathematics and mechanics</title><addtitle>Applied Mathematics and Mechanics(English Edition)</addtitle><description>Based on the Magnus integrator method established in linear dynamic systems, an efficiently improved modified Magnus integrator method was proposed for the second-order dynamic systems with time-dependent high frequencies. Firstly, the secondorder dynamic system was reformulated as the first-order system and the frame of reference was transfered by introducing new variables so that highly oscillatory behaviour inherits from the entries in the meantime. Then the modified Magnus integrator method based on local linearization was appropriately designed for solving the above new form and some improved also were presented. Finally, numerical examples show that the proposed methods appear to be quite adequate for integration for highly oscillatory dynamic systems including Hamiltonian systems problem with long time and effectiveness.</description><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Hamiltonian系统</subject><subject>High frequencies</subject><subject>Integrators</subject><subject>Linearization</subject><subject>Magnus积分法</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>动态系统</subject><subject>非线性振动</subject><issn>0253-4827</issn><issn>1573-2754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpNUctO4zAUtUaDNB3gA2ZnzQYJKYMfcewsQ5q0lvKQmnTRleWmDhRCQmOqoXw9jsqC1b26Oq-rA8AfjP5hhPidxcgX1EMo8DDCyPv4AWaYceoRzvyfYIYIo54vCP8Fflv7hBDyue_PwCFJUxnLpKhhsc6TlYyjDMqiTharqC5XFUzLFVzKxTLbwLKKZZZN5w2cb4oolzGsNlWd5BW8j6pkDssC5uVcptLtebQo1tU3LZgn9bKcX4GLVnfWXH_NS7BOkzpeelm5mNy9htLwzTPEF4JvudaUsxaFLTYNEkG7bYwgLn0odiHDTdtoPwyQe1nsDMaMMUQMDYIdvQS3Z93_um91_6CehuPYO0d1Otn3x-5dGacT4InrwDdn8Os4HI7GvqmXvW1M1-neDEerBCEMCxFOSHxGNuNg7Wha9TruX_R4UhipqQp1rkI5bTVVoT4c5-8X53HoHw57F2arm-d23xlFSMiZwCH9BEU8fa8</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>李文成 邓子辰 黄永安</creator><general>State Key Laboratory of Structural Analysis of Industrial Equipment,Dalian University of Technology,Dalian 116023,P.R.China%School of Mechanics,Civil Engineering and Architecture,Northwestern Polytechnical University,Xi'an 710072,P.R.China</general><general>School of Science,Northwestern Polytechnical University,Xi'an 710072,P.R.China%School of Mechanics,Civil Engineering and Architecture,Northwestern Polytechnical University,Xi'an 710072,P.R.China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20061001</creationdate><title>EFFICIENT NUMERICAL INTEGRATORS FOR HIGHLY OSCILLATORY DYNAMIC SYSTEMS BASED ON MODIFIED MAGNUS INTEGRATOR METHOD</title><author>李文成 邓子辰 黄永安</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-e24887b7aa375f09f1ec086fbce8200498d951cfca49600108de1155502e366d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Hamiltonian系统</topic><topic>High frequencies</topic><topic>Integrators</topic><topic>Linearization</topic><topic>Magnus积分法</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>动态系统</topic><topic>非线性振动</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>李文成 邓子辰 黄永安</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>李文成 邓子辰 黄永安</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EFFICIENT NUMERICAL INTEGRATORS FOR HIGHLY OSCILLATORY DYNAMIC SYSTEMS BASED ON MODIFIED MAGNUS INTEGRATOR METHOD</atitle><jtitle>Applied mathematics and mechanics</jtitle><addtitle>Applied Mathematics and Mechanics(English Edition)</addtitle><date>2006-10-01</date><risdate>2006</risdate><volume>27</volume><issue>10</issue><spage>1383</spage><epage>1390</epage><pages>1383-1390</pages><issn>0253-4827</issn><eissn>1573-2754</eissn><abstract>Based on the Magnus integrator method established in linear dynamic systems, an efficiently improved modified Magnus integrator method was proposed for the second-order dynamic systems with time-dependent high frequencies. Firstly, the secondorder dynamic system was reformulated as the first-order system and the frame of reference was transfered by introducing new variables so that highly oscillatory behaviour inherits from the entries in the meantime. Then the modified Magnus integrator method based on local linearization was appropriately designed for solving the above new form and some improved also were presented. Finally, numerical examples show that the proposed methods appear to be quite adequate for integration for highly oscillatory dynamic systems including Hamiltonian systems problem with long time and effectiveness.</abstract><pub>State Key Laboratory of Structural Analysis of Industrial Equipment,Dalian University of Technology,Dalian 116023,P.R.China%School of Mechanics,Civil Engineering and Architecture,Northwestern Polytechnical University,Xi'an 710072,P.R.China</pub><doi>10.1007/s10483-006-1010-z</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0253-4827
ispartof Applied mathematics and mechanics, 2006-10, Vol.27 (10), p.1383-1390
issn 0253-4827
1573-2754
language eng
recordid cdi_wanfang_journals_yysxhlx_e200610010
source SpringerNature Journals; Alma/SFX Local Collection
subjects Dynamical systems
Dynamics
Hamiltonian系统
High frequencies
Integrators
Linearization
Magnus积分法
Mathematical analysis
Mathematical models
动态系统
非线性振动
title EFFICIENT NUMERICAL INTEGRATORS FOR HIGHLY OSCILLATORY DYNAMIC SYSTEMS BASED ON MODIFIED MAGNUS INTEGRATOR METHOD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T10%3A28%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EFFICIENT%20NUMERICAL%20INTEGRATORS%20FOR%20HIGHLY%20OSCILLATORY%20DYNAMIC%20SYSTEMS%20BASED%20ON%20MODIFIED%20MAGNUS%20INTEGRATOR%20METHOD&rft.jtitle=Applied%20mathematics%20and%20mechanics&rft.au=%E6%9D%8E%E6%96%87%E6%88%90%20%E9%82%93%E5%AD%90%E8%BE%B0%20%E9%BB%84%E6%B0%B8%E5%AE%89&rft.date=2006-10-01&rft.volume=27&rft.issue=10&rft.spage=1383&rft.epage=1390&rft.pages=1383-1390&rft.issn=0253-4827&rft.eissn=1573-2754&rft_id=info:doi/10.1007/s10483-006-1010-z&rft_dat=%3Cwanfang_jour_proqu%3Eyysxhlx_e200610010%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=822518890&rft_id=info:pmid/&rft_cqvip_id=22975819&rft_wanfj_id=yysxhlx_e200610010&rfr_iscdi=true