NONSMOOTH MODEL FOR PLASTIC LIMIT ANALYSIS AND ITS SMOOTHING ALGORITHM
By means of Lagrange duality of Hill's maximum plastic work principle theory of the convex program, a dual problem under Mises' yield condition has been derived and whereby a non-differentiable convex optimization model for the limit analysis is developed. With this model, it is not necessary to lin...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and mechanics 2006-08, Vol.27 (8), p.1081-1088 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1088 |
---|---|
container_issue | 8 |
container_start_page | 1081 |
container_title | Applied mathematics and mechanics |
container_volume | 27 |
creator | 李建宇 潘少华 李兴斯 |
description | By means of Lagrange duality of Hill's maximum plastic work principle theory of the convex program, a dual problem under Mises' yield condition has been derived and whereby a non-differentiable convex optimization model for the limit analysis is developed. With this model, it is not necessary to linearize the yield condition and its discrete form becomes a minimization problem of the sum of Euclidean norms subject to linear constraints. Aimed at resolving the non-differentiability of Euclidean norms, a smoothing algorithm for the limit analysis of perfect-plastic continuum media is proposed. Its efficiency is demonstrated by computing the limit load factor and the collapse state for some plane stress and plain strain problems. |
doi_str_mv | 10.1007/s10483-006-0808-z |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_yysxhlx_e200608008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>22503867</cqvip_id><wanfj_id>yysxhlx_e200608008</wanfj_id><sourcerecordid>yysxhlx_e200608008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-5a777d05b6bda68208faab50b59a483e3dbc2f49149af16a43432611e444e76f3</originalsourceid><addsrcrecordid>eNotkMtOwkAUhidGExF9AHeNGxOT6plLO8OyQS5NCjW0LlxNpmXKxdJCByLw9A4pq3MW3_-fkw-hZwzvGIB_GAxMUBfAd0GAcM83qIM9Tl3CPXaLOkA86jJB-D16MGYNAIwz1kHDaTxNJnGcjp1J_DmInGE8c76iIEnDvhOFkzB1gmkQ_SRhYpdPJ0wTp-XD6cgJolE8C9Px5BHdFao0-uk6u-h7OEj7YzeKR2E_iNyc0t7e9RTnfA5e5mdz5QsColAq8yDzesq-r-k8y0nBepj1VIF9xSijxMdYM8Y09wvaRW9t75-qClUt5Lo-NJW9KE8nc1yWR6mJdWAVgLDwawtvm3p30GYvNyuT67JUla4PRgpCPCyEoJbELZk3tTGNLuS2WW1Uc5IY5MWvbP1K2y0vfuXZZl6umWVdLXYr-0ym8t9iVWppi4EKn9N_J8pyKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>822518883</pqid></control><display><type>article</type><title>NONSMOOTH MODEL FOR PLASTIC LIMIT ANALYSIS AND ITS SMOOTHING ALGORITHM</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>李建宇 潘少华 李兴斯</creator><creatorcontrib>李建宇 潘少华 李兴斯</creatorcontrib><description>By means of Lagrange duality of Hill's maximum plastic work principle theory of the convex program, a dual problem under Mises' yield condition has been derived and whereby a non-differentiable convex optimization model for the limit analysis is developed. With this model, it is not necessary to linearize the yield condition and its discrete form becomes a minimization problem of the sum of Euclidean norms subject to linear constraints. Aimed at resolving the non-differentiability of Euclidean norms, a smoothing algorithm for the limit analysis of perfect-plastic continuum media is proposed. Its efficiency is demonstrated by computing the limit load factor and the collapse state for some plane stress and plain strain problems.</description><identifier>ISSN: 0253-4827</identifier><identifier>EISSN: 1573-2754</identifier><identifier>DOI: 10.1007/s10483-006-0808-z</identifier><language>eng</language><publisher>State Key Laboratory of Structural Analysis for Industrial Equipment,Dalian University of Technology,Dalian 116023,P.R.China%Department of Applied Mathematics,South China University of Technology,Guangzhou 510641,P.R.China</publisher><subject>Algorithms ; Continuums ; Limit load ; Mathematical models ; Norms ; Optimization ; Smoothing ; Strain ; 塑料有限分析 ; 对偶性 ; 平滑法 ; 非光滑优化</subject><ispartof>Applied mathematics and mechanics, 2006-08, Vol.27 (8), p.1081-1088</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-5a777d05b6bda68208faab50b59a483e3dbc2f49149af16a43432611e444e76f3</citedby><cites>FETCH-LOGICAL-c339t-5a777d05b6bda68208faab50b59a483e3dbc2f49149af16a43432611e444e76f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86647X/86647X.jpg</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>李建宇 潘少华 李兴斯</creatorcontrib><title>NONSMOOTH MODEL FOR PLASTIC LIMIT ANALYSIS AND ITS SMOOTHING ALGORITHM</title><title>Applied mathematics and mechanics</title><addtitle>Applied Mathematics and Mechanics(English Edition)</addtitle><description>By means of Lagrange duality of Hill's maximum plastic work principle theory of the convex program, a dual problem under Mises' yield condition has been derived and whereby a non-differentiable convex optimization model for the limit analysis is developed. With this model, it is not necessary to linearize the yield condition and its discrete form becomes a minimization problem of the sum of Euclidean norms subject to linear constraints. Aimed at resolving the non-differentiability of Euclidean norms, a smoothing algorithm for the limit analysis of perfect-plastic continuum media is proposed. Its efficiency is demonstrated by computing the limit load factor and the collapse state for some plane stress and plain strain problems.</description><subject>Algorithms</subject><subject>Continuums</subject><subject>Limit load</subject><subject>Mathematical models</subject><subject>Norms</subject><subject>Optimization</subject><subject>Smoothing</subject><subject>Strain</subject><subject>塑料有限分析</subject><subject>对偶性</subject><subject>平滑法</subject><subject>非光滑优化</subject><issn>0253-4827</issn><issn>1573-2754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNotkMtOwkAUhidGExF9AHeNGxOT6plLO8OyQS5NCjW0LlxNpmXKxdJCByLw9A4pq3MW3_-fkw-hZwzvGIB_GAxMUBfAd0GAcM83qIM9Tl3CPXaLOkA86jJB-D16MGYNAIwz1kHDaTxNJnGcjp1J_DmInGE8c76iIEnDvhOFkzB1gmkQ_SRhYpdPJ0wTp-XD6cgJolE8C9Px5BHdFao0-uk6u-h7OEj7YzeKR2E_iNyc0t7e9RTnfA5e5mdz5QsColAq8yDzesq-r-k8y0nBepj1VIF9xSijxMdYM8Y09wvaRW9t75-qClUt5Lo-NJW9KE8nc1yWR6mJdWAVgLDwawtvm3p30GYvNyuT67JUla4PRgpCPCyEoJbELZk3tTGNLuS2WW1Uc5IY5MWvbP1K2y0vfuXZZl6umWVdLXYr-0ym8t9iVWppi4EKn9N_J8pyKg</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>李建宇 潘少华 李兴斯</creator><general>State Key Laboratory of Structural Analysis for Industrial Equipment,Dalian University of Technology,Dalian 116023,P.R.China%Department of Applied Mathematics,South China University of Technology,Guangzhou 510641,P.R.China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20060801</creationdate><title>NONSMOOTH MODEL FOR PLASTIC LIMIT ANALYSIS AND ITS SMOOTHING ALGORITHM</title><author>李建宇 潘少华 李兴斯</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-5a777d05b6bda68208faab50b59a483e3dbc2f49149af16a43432611e444e76f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Continuums</topic><topic>Limit load</topic><topic>Mathematical models</topic><topic>Norms</topic><topic>Optimization</topic><topic>Smoothing</topic><topic>Strain</topic><topic>塑料有限分析</topic><topic>对偶性</topic><topic>平滑法</topic><topic>非光滑优化</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>李建宇 潘少华 李兴斯</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>李建宇 潘少华 李兴斯</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NONSMOOTH MODEL FOR PLASTIC LIMIT ANALYSIS AND ITS SMOOTHING ALGORITHM</atitle><jtitle>Applied mathematics and mechanics</jtitle><addtitle>Applied Mathematics and Mechanics(English Edition)</addtitle><date>2006-08-01</date><risdate>2006</risdate><volume>27</volume><issue>8</issue><spage>1081</spage><epage>1088</epage><pages>1081-1088</pages><issn>0253-4827</issn><eissn>1573-2754</eissn><abstract>By means of Lagrange duality of Hill's maximum plastic work principle theory of the convex program, a dual problem under Mises' yield condition has been derived and whereby a non-differentiable convex optimization model for the limit analysis is developed. With this model, it is not necessary to linearize the yield condition and its discrete form becomes a minimization problem of the sum of Euclidean norms subject to linear constraints. Aimed at resolving the non-differentiability of Euclidean norms, a smoothing algorithm for the limit analysis of perfect-plastic continuum media is proposed. Its efficiency is demonstrated by computing the limit load factor and the collapse state for some plane stress and plain strain problems.</abstract><pub>State Key Laboratory of Structural Analysis for Industrial Equipment,Dalian University of Technology,Dalian 116023,P.R.China%Department of Applied Mathematics,South China University of Technology,Guangzhou 510641,P.R.China</pub><doi>10.1007/s10483-006-0808-z</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-4827 |
ispartof | Applied mathematics and mechanics, 2006-08, Vol.27 (8), p.1081-1088 |
issn | 0253-4827 1573-2754 |
language | eng |
recordid | cdi_wanfang_journals_yysxhlx_e200608008 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Algorithms Continuums Limit load Mathematical models Norms Optimization Smoothing Strain 塑料有限分析 对偶性 平滑法 非光滑优化 |
title | NONSMOOTH MODEL FOR PLASTIC LIMIT ANALYSIS AND ITS SMOOTHING ALGORITHM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A02%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NONSMOOTH%20MODEL%20FOR%20PLASTIC%20LIMIT%20ANALYSIS%20AND%20ITS%20SMOOTHING%20ALGORITHM&rft.jtitle=Applied%20mathematics%20and%20mechanics&rft.au=%E6%9D%8E%E5%BB%BA%E5%AE%87%20%E6%BD%98%E5%B0%91%E5%8D%8E%20%E6%9D%8E%E5%85%B4%E6%96%AF&rft.date=2006-08-01&rft.volume=27&rft.issue=8&rft.spage=1081&rft.epage=1088&rft.pages=1081-1088&rft.issn=0253-4827&rft.eissn=1573-2754&rft_id=info:doi/10.1007/s10483-006-0808-z&rft_dat=%3Cwanfang_jour_proqu%3Eyysxhlx_e200608008%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=822518883&rft_id=info:pmid/&rft_cqvip_id=22503867&rft_wanfj_id=yysxhlx_e200608008&rfr_iscdi=true |