A patchy-saturated rock physics model for tight sandstone based on microscopic pore structures
The wave-induced local fluid flow mechanism is relevant to the complex heterogeneity of pore structures in rocks. The analysis of the local fluid flow mechanism is useful for accurately describing the wave propagation characteristics in reservoir rocks. In the exploration and production of hydrocarb...
Gespeichert in:
Veröffentlicht in: | Applied geophysics 2022-06, Vol.19 (2), p.147-160 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 160 |
---|---|
container_issue | 2 |
container_start_page | 147 |
container_title | Applied geophysics |
container_volume | 19 |
creator | Wu, Chun-Fang Ba, Jing Carcione, José M. Müller, Tobias M. Zhang, Lin |
description | The wave-induced local fluid flow mechanism is relevant to the complex heterogeneity of pore structures in rocks. The analysis of the local fluid flow mechanism is useful for accurately describing the wave propagation characteristics in reservoir rocks. In the exploration and production of hydrocarbon reservoirs, the real stratum may be partially saturated with a multi-phase fluid mixture in general. Therefore, it is of great significance to investigate the wave velocity dispersion and attenuation features in relation to pore structures and fluids. In this work, the characteristics of fabric microstructures are obtained on the basis of pressure dependency of dry rock moduli using the effective medium theory. A novel anelasticity theoretical model for the wave propagation in a partially-saturated medium is presented by combining the extended Gurevich squirt-flow model and White patchy-saturation theory. Numerical simulations are used to analyze wave propagation characteristics that depend on water saturation, external patchy diameter, and viscosity. We consider a tight sandstone from the Qingyang area of the Ordos Basin in west China and perform ultrasonic measurements under partial saturation states and different confining pressures, where the basic properties of the rock are obtained at the full gas saturation. The comparison of experimental data and theoretical modeling results shows a fairly good agreement, indicating that the new theory is effective. |
doi_str_mv | 10.1007/s11770-022-0938-2 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_yydqwl202202001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>yydqwl202202001</wanfj_id><sourcerecordid>yydqwl202202001</sourcerecordid><originalsourceid>FETCH-LOGICAL-a301t-45674f3aa5cef28033092af78840e82a811e29e18fdd3d0149dae56e40c4888e3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhiMEEqXwA9gsMTAZznYS22NV8SVVYoEVyzh2m9LGqe2qyr_HVZA6Md0Nz_uc7i2KWwIPBIA_RkI4BwyUYpBMYHpWTIiUDENdifO815xiLnl1WVzFuAaoGa3LSfE1Q71OZjXgqNM-6GQbFLz5Qf1qiK2JaOsbu0HOB5Ta5SqhqLsmJt9Z9K1jhn2Htq0JPhrftwb1PlgUU9ibbLPxurhwehPtzd-cFp_PTx_zV7x4f3mbzxZYMyAJl1XNS8e0rox1VABjIKl2XIgSrKBaEGKptES4pmENkFI22la1LcGUQgjLpsX96D3ozuluqdZ-H7p8UQ1DsztsaC4GKADJ5N1I9sHv9jamE0p5zataVpRliozU8bMYrFN9aLc6DIqAOhauxsJV9qpj4YrmDB0zMbPd0oaT-f_QL-Ljg2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767569523</pqid></control><display><type>article</type><title>A patchy-saturated rock physics model for tight sandstone based on microscopic pore structures</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Wu, Chun-Fang ; Ba, Jing ; Carcione, José M. ; Müller, Tobias M. ; Zhang, Lin</creator><creatorcontrib>Wu, Chun-Fang ; Ba, Jing ; Carcione, José M. ; Müller, Tobias M. ; Zhang, Lin</creatorcontrib><description>The wave-induced local fluid flow mechanism is relevant to the complex heterogeneity of pore structures in rocks. The analysis of the local fluid flow mechanism is useful for accurately describing the wave propagation characteristics in reservoir rocks. In the exploration and production of hydrocarbon reservoirs, the real stratum may be partially saturated with a multi-phase fluid mixture in general. Therefore, it is of great significance to investigate the wave velocity dispersion and attenuation features in relation to pore structures and fluids. In this work, the characteristics of fabric microstructures are obtained on the basis of pressure dependency of dry rock moduli using the effective medium theory. A novel anelasticity theoretical model for the wave propagation in a partially-saturated medium is presented by combining the extended Gurevich squirt-flow model and White patchy-saturation theory. Numerical simulations are used to analyze wave propagation characteristics that depend on water saturation, external patchy diameter, and viscosity. We consider a tight sandstone from the Qingyang area of the Ordos Basin in west China and perform ultrasonic measurements under partial saturation states and different confining pressures, where the basic properties of the rock are obtained at the full gas saturation. The comparison of experimental data and theoretical modeling results shows a fairly good agreement, indicating that the new theory is effective.</description><identifier>ISSN: 1672-7975</identifier><identifier>EISSN: 1993-0658</identifier><identifier>DOI: 10.1007/s11770-022-0938-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anelasticity ; Borehole Geophysics and Rock Properties ; Diameters ; Earth and Environmental Science ; Earth Sciences ; Effective medium theory ; Elasticity ; Fluid dynamics ; Fluid flow ; Fluids ; Geophysics/Geodesy ; Geotechnical Engineering & Applied Earth Sciences ; Heterogeneity ; Hydrocarbons ; Mathematical models ; Modelling ; Numerical simulations ; Physics ; Pressure dependence ; Propagation ; Reservoirs ; Rocks ; Sandstone ; Saturation ; Sedimentary rocks ; Structures ; Theories ; Ultrasonic methods ; Viscosity ; Wave attenuation ; Wave dispersion ; Wave propagation ; Wave velocity</subject><ispartof>Applied geophysics, 2022-06, Vol.19 (2), p.147-160</ispartof><rights>The Editorial Department of APPLIED GEOPHYSICS. All rights reserved. 2022</rights><rights>The Editorial Department of APPLIED GEOPHYSICS. All rights reserved. 2022.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a301t-45674f3aa5cef28033092af78840e82a811e29e18fdd3d0149dae56e40c4888e3</citedby><cites>FETCH-LOGICAL-a301t-45674f3aa5cef28033092af78840e82a811e29e18fdd3d0149dae56e40c4888e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/yydqwl/yydqwl.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11770-022-0938-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11770-022-0938-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Wu, Chun-Fang</creatorcontrib><creatorcontrib>Ba, Jing</creatorcontrib><creatorcontrib>Carcione, José M.</creatorcontrib><creatorcontrib>Müller, Tobias M.</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><title>A patchy-saturated rock physics model for tight sandstone based on microscopic pore structures</title><title>Applied geophysics</title><addtitle>Appl. Geophys</addtitle><description>The wave-induced local fluid flow mechanism is relevant to the complex heterogeneity of pore structures in rocks. The analysis of the local fluid flow mechanism is useful for accurately describing the wave propagation characteristics in reservoir rocks. In the exploration and production of hydrocarbon reservoirs, the real stratum may be partially saturated with a multi-phase fluid mixture in general. Therefore, it is of great significance to investigate the wave velocity dispersion and attenuation features in relation to pore structures and fluids. In this work, the characteristics of fabric microstructures are obtained on the basis of pressure dependency of dry rock moduli using the effective medium theory. A novel anelasticity theoretical model for the wave propagation in a partially-saturated medium is presented by combining the extended Gurevich squirt-flow model and White patchy-saturation theory. Numerical simulations are used to analyze wave propagation characteristics that depend on water saturation, external patchy diameter, and viscosity. We consider a tight sandstone from the Qingyang area of the Ordos Basin in west China and perform ultrasonic measurements under partial saturation states and different confining pressures, where the basic properties of the rock are obtained at the full gas saturation. The comparison of experimental data and theoretical modeling results shows a fairly good agreement, indicating that the new theory is effective.</description><subject>Anelasticity</subject><subject>Borehole Geophysics and Rock Properties</subject><subject>Diameters</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Effective medium theory</subject><subject>Elasticity</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Heterogeneity</subject><subject>Hydrocarbons</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Numerical simulations</subject><subject>Physics</subject><subject>Pressure dependence</subject><subject>Propagation</subject><subject>Reservoirs</subject><subject>Rocks</subject><subject>Sandstone</subject><subject>Saturation</subject><subject>Sedimentary rocks</subject><subject>Structures</subject><subject>Theories</subject><subject>Ultrasonic methods</subject><subject>Viscosity</subject><subject>Wave attenuation</subject><subject>Wave dispersion</subject><subject>Wave propagation</subject><subject>Wave velocity</subject><issn>1672-7975</issn><issn>1993-0658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhiMEEqXwA9gsMTAZznYS22NV8SVVYoEVyzh2m9LGqe2qyr_HVZA6Md0Nz_uc7i2KWwIPBIA_RkI4BwyUYpBMYHpWTIiUDENdifO815xiLnl1WVzFuAaoGa3LSfE1Q71OZjXgqNM-6GQbFLz5Qf1qiK2JaOsbu0HOB5Ta5SqhqLsmJt9Z9K1jhn2Htq0JPhrftwb1PlgUU9ibbLPxurhwehPtzd-cFp_PTx_zV7x4f3mbzxZYMyAJl1XNS8e0rox1VABjIKl2XIgSrKBaEGKptES4pmENkFI22la1LcGUQgjLpsX96D3ozuluqdZ-H7p8UQ1DsztsaC4GKADJ5N1I9sHv9jamE0p5zataVpRliozU8bMYrFN9aLc6DIqAOhauxsJV9qpj4YrmDB0zMbPd0oaT-f_QL-Ljg2A</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Wu, Chun-Fang</creator><creator>Ba, Jing</creator><creator>Carcione, José M.</creator><creator>Müller, Tobias M.</creator><creator>Zhang, Lin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>National Institute of Oceanography and Applied Geophysics(OGS),Trieste 34010,Italy</general><general>School of Earth Sciences and Engineering,Hohai University,Nanjing 211100,China%School of Earth Sciences and Engineering,Hohai University,Nanjing 211100,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20220601</creationdate><title>A patchy-saturated rock physics model for tight sandstone based on microscopic pore structures</title><author>Wu, Chun-Fang ; Ba, Jing ; Carcione, José M. ; Müller, Tobias M. ; Zhang, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a301t-45674f3aa5cef28033092af78840e82a811e29e18fdd3d0149dae56e40c4888e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anelasticity</topic><topic>Borehole Geophysics and Rock Properties</topic><topic>Diameters</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Effective medium theory</topic><topic>Elasticity</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Heterogeneity</topic><topic>Hydrocarbons</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Numerical simulations</topic><topic>Physics</topic><topic>Pressure dependence</topic><topic>Propagation</topic><topic>Reservoirs</topic><topic>Rocks</topic><topic>Sandstone</topic><topic>Saturation</topic><topic>Sedimentary rocks</topic><topic>Structures</topic><topic>Theories</topic><topic>Ultrasonic methods</topic><topic>Viscosity</topic><topic>Wave attenuation</topic><topic>Wave dispersion</topic><topic>Wave propagation</topic><topic>Wave velocity</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu, Chun-Fang</creatorcontrib><creatorcontrib>Ba, Jing</creatorcontrib><creatorcontrib>Carcione, José M.</creatorcontrib><creatorcontrib>Müller, Tobias M.</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Chun-Fang</au><au>Ba, Jing</au><au>Carcione, José M.</au><au>Müller, Tobias M.</au><au>Zhang, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A patchy-saturated rock physics model for tight sandstone based on microscopic pore structures</atitle><jtitle>Applied geophysics</jtitle><stitle>Appl. Geophys</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>19</volume><issue>2</issue><spage>147</spage><epage>160</epage><pages>147-160</pages><issn>1672-7975</issn><eissn>1993-0658</eissn><abstract>The wave-induced local fluid flow mechanism is relevant to the complex heterogeneity of pore structures in rocks. The analysis of the local fluid flow mechanism is useful for accurately describing the wave propagation characteristics in reservoir rocks. In the exploration and production of hydrocarbon reservoirs, the real stratum may be partially saturated with a multi-phase fluid mixture in general. Therefore, it is of great significance to investigate the wave velocity dispersion and attenuation features in relation to pore structures and fluids. In this work, the characteristics of fabric microstructures are obtained on the basis of pressure dependency of dry rock moduli using the effective medium theory. A novel anelasticity theoretical model for the wave propagation in a partially-saturated medium is presented by combining the extended Gurevich squirt-flow model and White patchy-saturation theory. Numerical simulations are used to analyze wave propagation characteristics that depend on water saturation, external patchy diameter, and viscosity. We consider a tight sandstone from the Qingyang area of the Ordos Basin in west China and perform ultrasonic measurements under partial saturation states and different confining pressures, where the basic properties of the rock are obtained at the full gas saturation. The comparison of experimental data and theoretical modeling results shows a fairly good agreement, indicating that the new theory is effective.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11770-022-0938-2</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1672-7975 |
ispartof | Applied geophysics, 2022-06, Vol.19 (2), p.147-160 |
issn | 1672-7975 1993-0658 |
language | eng |
recordid | cdi_wanfang_journals_yydqwl202202001 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Anelasticity Borehole Geophysics and Rock Properties Diameters Earth and Environmental Science Earth Sciences Effective medium theory Elasticity Fluid dynamics Fluid flow Fluids Geophysics/Geodesy Geotechnical Engineering & Applied Earth Sciences Heterogeneity Hydrocarbons Mathematical models Modelling Numerical simulations Physics Pressure dependence Propagation Reservoirs Rocks Sandstone Saturation Sedimentary rocks Structures Theories Ultrasonic methods Viscosity Wave attenuation Wave dispersion Wave propagation Wave velocity |
title | A patchy-saturated rock physics model for tight sandstone based on microscopic pore structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A53%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20patchy-saturated%20rock%20physics%20model%20for%20tight%20sandstone%20based%20on%20microscopic%20pore%20structures&rft.jtitle=Applied%20geophysics&rft.au=Wu,%20Chun-Fang&rft.date=2022-06-01&rft.volume=19&rft.issue=2&rft.spage=147&rft.epage=160&rft.pages=147-160&rft.issn=1672-7975&rft.eissn=1993-0658&rft_id=info:doi/10.1007/s11770-022-0938-2&rft_dat=%3Cwanfang_jour_proqu%3Eyydqwl202202001%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2767569523&rft_id=info:pmid/&rft_wanfj_id=yydqwl202202001&rfr_iscdi=true |