Identification of blasting vibration and coal-rock fracturing microseismic signals

Α new method based on variational mode decomposition (VMD) is proposed to distinguish between coal-rock fracturing and blasting vibration microseismic signals. First, the signals are decomposed to obtain the variational mode components, which are ranked by frequency in descending order. Second, each...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied geophysics 2018-06, Vol.15 (2), p.280-289
Hauptverfasser: Zhang, Xing-Li, Jia, Rui-Sheng, Lu, Xin-Ming, Peng, Yan-Jun, Zhao, Wei-Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 289
container_issue 2
container_start_page 280
container_title Applied geophysics
container_volume 15
creator Zhang, Xing-Li
Jia, Rui-Sheng
Lu, Xin-Ming
Peng, Yan-Jun
Zhao, Wei-Dong
description Α new method based on variational mode decomposition (VMD) is proposed to distinguish between coal-rock fracturing and blasting vibration microseismic signals. First, the signals are decomposed to obtain the variational mode components, which are ranked by frequency in descending order. Second, each mode component is extracted to form the eigenvector of the energy of the original signal and calculate the center of gravity coefficient of the energy distribution plane. Finally, the coal-rock fracturing and blasting vibration signals are classified using a decision tree stump. Experimental results suggest that VMD can effectively separate the signal components into coal-rock fracturing and blasting vibration signals based on frequency. The contrast in the energy distribution center coefficient after the dimension reduction of the energy distribution eigenvector accurately identifies the two types of microseismic signals. The method is verified by comparing it to EMD and wavelet packet decomposition.
doi_str_mv 10.1007/s11770-018-0682-9
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_yydqwl201802013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>yydqwl201802013</wanfj_id><sourcerecordid>yydqwl201802013</sourcerecordid><originalsourceid>FETCH-LOGICAL-a371t-5e6eb3d6e0c857ffdb56f957d6c86db55f6ede0a308239c5ff6c7c6fb07c11613</originalsourceid><addsrcrecordid>eNp1kE9LwzAYxoMoOKcfwFvBg6fom8QkzVGGzsFAED2HNE1GZtduSefYtzelwk5e3n_8nofkQeiWwAMBkI-JECkBAykxiJJidYYmRCmWN16e51lIiqWS_BJdpbQGEIyKpwn6WNSu7YMP1vSha4vOF1VjUh_aVfETqjheTVsXtjMNjp39Lnw0tt_HAdkEG7vkQspDkcKqNU26Rhc-N3fz16fo6_Xlc_aGl-_zxex5iQ2TpMfcCVexWjiwJZfe1xUXXnFZC1uKvHAvXO3AMCgpU5Z7L6y0wlcgLSGCsCm6H30PpvWmXel1t4_DA_TxWO8ODc1hQC4sk3cjuY3dbu9Sf0IpKCUV40RmiozU8KUUndfbGDYmHjUBPYSsx5B19tVDyFplDR01aTvk4eLJ-X_RLxTYgFY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099793517</pqid></control><display><type>article</type><title>Identification of blasting vibration and coal-rock fracturing microseismic signals</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Zhang, Xing-Li ; Jia, Rui-Sheng ; Lu, Xin-Ming ; Peng, Yan-Jun ; Zhao, Wei-Dong</creator><creatorcontrib>Zhang, Xing-Li ; Jia, Rui-Sheng ; Lu, Xin-Ming ; Peng, Yan-Jun ; Zhao, Wei-Dong</creatorcontrib><description>Α new method based on variational mode decomposition (VMD) is proposed to distinguish between coal-rock fracturing and blasting vibration microseismic signals. First, the signals are decomposed to obtain the variational mode components, which are ranked by frequency in descending order. Second, each mode component is extracted to form the eigenvector of the energy of the original signal and calculate the center of gravity coefficient of the energy distribution plane. Finally, the coal-rock fracturing and blasting vibration signals are classified using a decision tree stump. Experimental results suggest that VMD can effectively separate the signal components into coal-rock fracturing and blasting vibration signals based on frequency. The contrast in the energy distribution center coefficient after the dimension reduction of the energy distribution eigenvector accurately identifies the two types of microseismic signals. The method is verified by comparing it to EMD and wavelet packet decomposition.</description><identifier>ISSN: 1672-7975</identifier><identifier>EISSN: 1993-0658</identifier><identifier>DOI: 10.1007/s11770-018-0682-9</identifier><language>eng</language><publisher>Beijing: Chinese Geophysical Society</publisher><subject>Blasting ; Center of gravity ; Coal ; Components ; Decision trees ; Decomposition ; Distribution ; Earth and Environmental Science ; Earth Sciences ; Eigenvectors ; Energy ; Energy distribution ; Fracturing ; Geophysics/Geodesy ; Geotechnical Engineering &amp; Applied Earth Sciences ; Gravity ; Mathematical analysis ; Methods ; Microseisms ; Rocks ; Signal classification ; Vibration ; Wavelet analysis</subject><ispartof>Applied geophysics, 2018-06, Vol.15 (2), p.280-289</ispartof><rights>Editorial Office of Applied Geophysics and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Applied Geophysics is a copyright of Springer, (2018). All Rights Reserved.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a371t-5e6eb3d6e0c857ffdb56f957d6c86db55f6ede0a308239c5ff6c7c6fb07c11613</citedby><cites>FETCH-LOGICAL-a371t-5e6eb3d6e0c857ffdb56f957d6c86db55f6ede0a308239c5ff6c7c6fb07c11613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/yydqwl/yydqwl.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11770-018-0682-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11770-018-0682-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Zhang, Xing-Li</creatorcontrib><creatorcontrib>Jia, Rui-Sheng</creatorcontrib><creatorcontrib>Lu, Xin-Ming</creatorcontrib><creatorcontrib>Peng, Yan-Jun</creatorcontrib><creatorcontrib>Zhao, Wei-Dong</creatorcontrib><title>Identification of blasting vibration and coal-rock fracturing microseismic signals</title><title>Applied geophysics</title><addtitle>Appl. Geophys</addtitle><description>Α new method based on variational mode decomposition (VMD) is proposed to distinguish between coal-rock fracturing and blasting vibration microseismic signals. First, the signals are decomposed to obtain the variational mode components, which are ranked by frequency in descending order. Second, each mode component is extracted to form the eigenvector of the energy of the original signal and calculate the center of gravity coefficient of the energy distribution plane. Finally, the coal-rock fracturing and blasting vibration signals are classified using a decision tree stump. Experimental results suggest that VMD can effectively separate the signal components into coal-rock fracturing and blasting vibration signals based on frequency. The contrast in the energy distribution center coefficient after the dimension reduction of the energy distribution eigenvector accurately identifies the two types of microseismic signals. The method is verified by comparing it to EMD and wavelet packet decomposition.</description><subject>Blasting</subject><subject>Center of gravity</subject><subject>Coal</subject><subject>Components</subject><subject>Decision trees</subject><subject>Decomposition</subject><subject>Distribution</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Eigenvectors</subject><subject>Energy</subject><subject>Energy distribution</subject><subject>Fracturing</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Gravity</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Microseisms</subject><subject>Rocks</subject><subject>Signal classification</subject><subject>Vibration</subject><subject>Wavelet analysis</subject><issn>1672-7975</issn><issn>1993-0658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LwzAYxoMoOKcfwFvBg6fom8QkzVGGzsFAED2HNE1GZtduSefYtzelwk5e3n_8nofkQeiWwAMBkI-JECkBAykxiJJidYYmRCmWN16e51lIiqWS_BJdpbQGEIyKpwn6WNSu7YMP1vSha4vOF1VjUh_aVfETqjheTVsXtjMNjp39Lnw0tt_HAdkEG7vkQspDkcKqNU26Rhc-N3fz16fo6_Xlc_aGl-_zxex5iQ2TpMfcCVexWjiwJZfe1xUXXnFZC1uKvHAvXO3AMCgpU5Z7L6y0wlcgLSGCsCm6H30PpvWmXel1t4_DA_TxWO8ODc1hQC4sk3cjuY3dbu9Sf0IpKCUV40RmiozU8KUUndfbGDYmHjUBPYSsx5B19tVDyFplDR01aTvk4eLJ-X_RLxTYgFY</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Zhang, Xing-Li</creator><creator>Jia, Rui-Sheng</creator><creator>Lu, Xin-Ming</creator><creator>Peng, Yan-Jun</creator><creator>Zhao, Wei-Dong</creator><general>Chinese Geophysical Society</general><general>Springer Nature B.V</general><general>College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China</general><general>Shandong Province Key Laboratory of Wisdom Mine Information Technology, Shandong University of Science and Technology, Qingdao 266590, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20180601</creationdate><title>Identification of blasting vibration and coal-rock fracturing microseismic signals</title><author>Zhang, Xing-Li ; Jia, Rui-Sheng ; Lu, Xin-Ming ; Peng, Yan-Jun ; Zhao, Wei-Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a371t-5e6eb3d6e0c857ffdb56f957d6c86db55f6ede0a308239c5ff6c7c6fb07c11613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Blasting</topic><topic>Center of gravity</topic><topic>Coal</topic><topic>Components</topic><topic>Decision trees</topic><topic>Decomposition</topic><topic>Distribution</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Eigenvectors</topic><topic>Energy</topic><topic>Energy distribution</topic><topic>Fracturing</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Gravity</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Microseisms</topic><topic>Rocks</topic><topic>Signal classification</topic><topic>Vibration</topic><topic>Wavelet analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xing-Li</creatorcontrib><creatorcontrib>Jia, Rui-Sheng</creatorcontrib><creatorcontrib>Lu, Xin-Ming</creatorcontrib><creatorcontrib>Peng, Yan-Jun</creatorcontrib><creatorcontrib>Zhao, Wei-Dong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xing-Li</au><au>Jia, Rui-Sheng</au><au>Lu, Xin-Ming</au><au>Peng, Yan-Jun</au><au>Zhao, Wei-Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of blasting vibration and coal-rock fracturing microseismic signals</atitle><jtitle>Applied geophysics</jtitle><stitle>Appl. Geophys</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>15</volume><issue>2</issue><spage>280</spage><epage>289</epage><pages>280-289</pages><issn>1672-7975</issn><eissn>1993-0658</eissn><abstract>Α new method based on variational mode decomposition (VMD) is proposed to distinguish between coal-rock fracturing and blasting vibration microseismic signals. First, the signals are decomposed to obtain the variational mode components, which are ranked by frequency in descending order. Second, each mode component is extracted to form the eigenvector of the energy of the original signal and calculate the center of gravity coefficient of the energy distribution plane. Finally, the coal-rock fracturing and blasting vibration signals are classified using a decision tree stump. Experimental results suggest that VMD can effectively separate the signal components into coal-rock fracturing and blasting vibration signals based on frequency. The contrast in the energy distribution center coefficient after the dimension reduction of the energy distribution eigenvector accurately identifies the two types of microseismic signals. The method is verified by comparing it to EMD and wavelet packet decomposition.</abstract><cop>Beijing</cop><pub>Chinese Geophysical Society</pub><doi>10.1007/s11770-018-0682-9</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1672-7975
ispartof Applied geophysics, 2018-06, Vol.15 (2), p.280-289
issn 1672-7975
1993-0658
language eng
recordid cdi_wanfang_journals_yydqwl201802013
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Blasting
Center of gravity
Coal
Components
Decision trees
Decomposition
Distribution
Earth and Environmental Science
Earth Sciences
Eigenvectors
Energy
Energy distribution
Fracturing
Geophysics/Geodesy
Geotechnical Engineering & Applied Earth Sciences
Gravity
Mathematical analysis
Methods
Microseisms
Rocks
Signal classification
Vibration
Wavelet analysis
title Identification of blasting vibration and coal-rock fracturing microseismic signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A13%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20blasting%20vibration%20and%20coal-rock%20fracturing%20microseismic%20signals&rft.jtitle=Applied%20geophysics&rft.au=Zhang,%20Xing-Li&rft.date=2018-06-01&rft.volume=15&rft.issue=2&rft.spage=280&rft.epage=289&rft.pages=280-289&rft.issn=1672-7975&rft.eissn=1993-0658&rft_id=info:doi/10.1007/s11770-018-0682-9&rft_dat=%3Cwanfang_jour_proqu%3Eyydqwl201802013%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099793517&rft_id=info:pmid/&rft_wanfj_id=yydqwl201802013&rfr_iscdi=true