Three-dimensional arbitrarily anisotropic modeling for time-domain airborne electromagnetic surveys

Electrically anisotropic strata are abundant in nature, so their study can help our data interpretation and our understanding of the processes of geodynamics. However, current data processing generally assumes isotropic conditions when surveying anisotropic structures, which may cause discrepancies...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied geophysics 2017-09, Vol.14 (3), p.431-440
Hauptverfasser: Huang, Wei, Ben, Fang, Yin, Chang-Chun, Meng, Qing-Min, Li, Wen-Jie, Liao, Gui-Xiang, Wu, Shan, Xi, Yong-Zai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 440
container_issue 3
container_start_page 431
container_title Applied geophysics
container_volume 14
creator Huang, Wei
Ben, Fang
Yin, Chang-Chun
Meng, Qing-Min
Li, Wen-Jie
Liao, Gui-Xiang
Wu, Shan
Xi, Yong-Zai
description Electrically anisotropic strata are abundant in nature, so their study can help our data interpretation and our understanding of the processes of geodynamics. However, current data processing generally assumes isotropic conditions when surveying anisotropic structures, which may cause discrepancies between reality and electromagnetic data interpretation. Moreover, the anisotropic interpretation of the time-domain airborne electromagnetic (TDAEM) method is still confined to one dimensional (1D) cases, and the corresponding three-dimensional (3D) numerical simulations are still in development. In this study, we expanded the 3D TDAEM modeling of arbitrarily anisotropic media. First, through coordinate rotation of isotropic conductivity, we obtained the conductivity tensor of an arbitrary anisotropic rock. Next, we incorporated this into Maxwell’s equations, using a regular hexahedral grid of vector finite elements to subdivide the solution area. A direct solver software package provided the solution for the sparse linear equations that resulted. Analytical solutions were used to verify the accuracy and feasibility of the algorithm. The proven model was then applied to analyze the effects of arbitrary anisotropy in 3D TDAEM via the distribution of responses and amplitude changes, which revealed that different anisotropy situations strongly affected the responses of TDAEM.
doi_str_mv 10.1007/s11770-017-0627-8
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_yydqwl201703011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>yydqwl201703011</wanfj_id><sourcerecordid>yydqwl201703011</sourcerecordid><originalsourceid>FETCH-LOGICAL-a371t-464f165310aff0aee8f62eb4659c373176e626258600cb9ab33dbbaa6e50668f3</originalsourceid><addsrcrecordid>eNp1kE9LwzAYh4soOKcfwFvBg6do0rRJe5ThPxh4mefwtn0zM9pkSzpHv72ZFfTiKQk8zw_yJMk1o3eMUnkfGJOSEsokoSKTpDxJZqyqeHwV5Wm8C5kRWcniPLkIYUOp4JnIZ0mz-vCIpDU92mCchS4FX5vBgzfdmII1wQ3ebU2T9q7Fzth1qp1PhyiQ1vVgbArG185bTLHDJsI9rC0O0Qh7_4ljuEzONHQBr37OefL-9LhavJDl2_Pr4mFJgEs2kFzkmomCMwpaU0AstciwzkVRNVxyJgWKTGRFKSht6gpqztu6BhBYUCFKzefJ7bR7AKvBrtXG7X38UVDj2O4OXRbrUE4Zi-TNRG692-0xDL8oq4oYUlTfFJuoxrsQPGq19aYHPypG1bG6mqqruKuO1VUZnWxyQmTtGv2f5X-lL3Cmhmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1957706911</pqid></control><display><type>article</type><title>Three-dimensional arbitrarily anisotropic modeling for time-domain airborne electromagnetic surveys</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Huang, Wei ; Ben, Fang ; Yin, Chang-Chun ; Meng, Qing-Min ; Li, Wen-Jie ; Liao, Gui-Xiang ; Wu, Shan ; Xi, Yong-Zai</creator><creatorcontrib>Huang, Wei ; Ben, Fang ; Yin, Chang-Chun ; Meng, Qing-Min ; Li, Wen-Jie ; Liao, Gui-Xiang ; Wu, Shan ; Xi, Yong-Zai</creatorcontrib><description>Electrically anisotropic strata are abundant in nature, so their study can help our data interpretation and our understanding of the processes of geodynamics. However, current data processing generally assumes isotropic conditions when surveying anisotropic structures, which may cause discrepancies between reality and electromagnetic data interpretation. Moreover, the anisotropic interpretation of the time-domain airborne electromagnetic (TDAEM) method is still confined to one dimensional (1D) cases, and the corresponding three-dimensional (3D) numerical simulations are still in development. In this study, we expanded the 3D TDAEM modeling of arbitrarily anisotropic media. First, through coordinate rotation of isotropic conductivity, we obtained the conductivity tensor of an arbitrary anisotropic rock. Next, we incorporated this into Maxwell’s equations, using a regular hexahedral grid of vector finite elements to subdivide the solution area. A direct solver software package provided the solution for the sparse linear equations that resulted. Analytical solutions were used to verify the accuracy and feasibility of the algorithm. The proven model was then applied to analyze the effects of arbitrary anisotropy in 3D TDAEM via the distribution of responses and amplitude changes, which revealed that different anisotropy situations strongly affected the responses of TDAEM.</description><identifier>ISSN: 1672-7975</identifier><identifier>EISSN: 1993-0658</identifier><identifier>DOI: 10.1007/s11770-017-0627-8</identifier><language>eng</language><publisher>Beijing: Chinese Geophysical Society</publisher><subject>Anisotropic media ; Anisotropic rocks ; Anisotropy ; Computer simulation ; Computer software ; Conductivity ; Current data ; Data analysis ; Data interpretation ; Data processing ; Earth and Environmental Science ; Earth Sciences ; Electrical &amp; Electromagnetic Methods ; Feasibility studies ; Geodynamics ; Geophysics/Geodesy ; Geotechnical Engineering &amp; Applied Earth Sciences ; Linear equations ; Mathematical models ; Modelling ; Numerical simulations ; Rotation ; Surveying ; Surveys ; Tectonophysics ; Three dimensional models ; Time domain analysis</subject><ispartof>Applied geophysics, 2017-09, Vol.14 (3), p.431-440</ispartof><rights>Editorial Office of Applied Geophysics and Springer-Verlag GmbH Germany 2017</rights><rights>Applied Geophysics is a copyright of Springer, 2017.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a371t-464f165310aff0aee8f62eb4659c373176e626258600cb9ab33dbbaa6e50668f3</citedby><cites>FETCH-LOGICAL-a371t-464f165310aff0aee8f62eb4659c373176e626258600cb9ab33dbbaa6e50668f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/yydqwl/yydqwl.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11770-017-0627-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11770-017-0627-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Ben, Fang</creatorcontrib><creatorcontrib>Yin, Chang-Chun</creatorcontrib><creatorcontrib>Meng, Qing-Min</creatorcontrib><creatorcontrib>Li, Wen-Jie</creatorcontrib><creatorcontrib>Liao, Gui-Xiang</creatorcontrib><creatorcontrib>Wu, Shan</creatorcontrib><creatorcontrib>Xi, Yong-Zai</creatorcontrib><title>Three-dimensional arbitrarily anisotropic modeling for time-domain airborne electromagnetic surveys</title><title>Applied geophysics</title><addtitle>Appl. Geophys</addtitle><description>Electrically anisotropic strata are abundant in nature, so their study can help our data interpretation and our understanding of the processes of geodynamics. However, current data processing generally assumes isotropic conditions when surveying anisotropic structures, which may cause discrepancies between reality and electromagnetic data interpretation. Moreover, the anisotropic interpretation of the time-domain airborne electromagnetic (TDAEM) method is still confined to one dimensional (1D) cases, and the corresponding three-dimensional (3D) numerical simulations are still in development. In this study, we expanded the 3D TDAEM modeling of arbitrarily anisotropic media. First, through coordinate rotation of isotropic conductivity, we obtained the conductivity tensor of an arbitrary anisotropic rock. Next, we incorporated this into Maxwell’s equations, using a regular hexahedral grid of vector finite elements to subdivide the solution area. A direct solver software package provided the solution for the sparse linear equations that resulted. Analytical solutions were used to verify the accuracy and feasibility of the algorithm. The proven model was then applied to analyze the effects of arbitrary anisotropy in 3D TDAEM via the distribution of responses and amplitude changes, which revealed that different anisotropy situations strongly affected the responses of TDAEM.</description><subject>Anisotropic media</subject><subject>Anisotropic rocks</subject><subject>Anisotropy</subject><subject>Computer simulation</subject><subject>Computer software</subject><subject>Conductivity</subject><subject>Current data</subject><subject>Data analysis</subject><subject>Data interpretation</subject><subject>Data processing</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Electrical &amp; Electromagnetic Methods</subject><subject>Feasibility studies</subject><subject>Geodynamics</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Linear equations</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Numerical simulations</subject><subject>Rotation</subject><subject>Surveying</subject><subject>Surveys</subject><subject>Tectonophysics</subject><subject>Three dimensional models</subject><subject>Time domain analysis</subject><issn>1672-7975</issn><issn>1993-0658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LwzAYh4soOKcfwFvBg6do0rRJe5ThPxh4mefwtn0zM9pkSzpHv72ZFfTiKQk8zw_yJMk1o3eMUnkfGJOSEsokoSKTpDxJZqyqeHwV5Wm8C5kRWcniPLkIYUOp4JnIZ0mz-vCIpDU92mCchS4FX5vBgzfdmII1wQ3ebU2T9q7Fzth1qp1PhyiQ1vVgbArG185bTLHDJsI9rC0O0Qh7_4ljuEzONHQBr37OefL-9LhavJDl2_Pr4mFJgEs2kFzkmomCMwpaU0AstciwzkVRNVxyJgWKTGRFKSht6gpqztu6BhBYUCFKzefJ7bR7AKvBrtXG7X38UVDj2O4OXRbrUE4Zi-TNRG692-0xDL8oq4oYUlTfFJuoxrsQPGq19aYHPypG1bG6mqqruKuO1VUZnWxyQmTtGv2f5X-lL3Cmhmg</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Huang, Wei</creator><creator>Ben, Fang</creator><creator>Yin, Chang-Chun</creator><creator>Meng, Qing-Min</creator><creator>Li, Wen-Jie</creator><creator>Liao, Gui-Xiang</creator><creator>Wu, Shan</creator><creator>Xi, Yong-Zai</creator><general>Chinese Geophysical Society</general><general>Springer Nature B.V</general><general>Laboratory of geophysical Electromagnetic Probing Technologies,Ministry of land and Resources,Langfang 065000,China%College of Geo-exploration Sciences and Technology,Jilin University,Changchun 130021,China%Institute of Geophysical and Geochemical Exploration,Chinese Academy of Geological Science,Langfang 065000,China</general><general>Institute of Geophysical and Geochemical Exploration,Chinese Academy of Geological Science,Langfang 065000,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20170901</creationdate><title>Three-dimensional arbitrarily anisotropic modeling for time-domain airborne electromagnetic surveys</title><author>Huang, Wei ; Ben, Fang ; Yin, Chang-Chun ; Meng, Qing-Min ; Li, Wen-Jie ; Liao, Gui-Xiang ; Wu, Shan ; Xi, Yong-Zai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a371t-464f165310aff0aee8f62eb4659c373176e626258600cb9ab33dbbaa6e50668f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anisotropic media</topic><topic>Anisotropic rocks</topic><topic>Anisotropy</topic><topic>Computer simulation</topic><topic>Computer software</topic><topic>Conductivity</topic><topic>Current data</topic><topic>Data analysis</topic><topic>Data interpretation</topic><topic>Data processing</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Electrical &amp; Electromagnetic Methods</topic><topic>Feasibility studies</topic><topic>Geodynamics</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Linear equations</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Numerical simulations</topic><topic>Rotation</topic><topic>Surveying</topic><topic>Surveys</topic><topic>Tectonophysics</topic><topic>Three dimensional models</topic><topic>Time domain analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Ben, Fang</creatorcontrib><creatorcontrib>Yin, Chang-Chun</creatorcontrib><creatorcontrib>Meng, Qing-Min</creatorcontrib><creatorcontrib>Li, Wen-Jie</creatorcontrib><creatorcontrib>Liao, Gui-Xiang</creatorcontrib><creatorcontrib>Wu, Shan</creatorcontrib><creatorcontrib>Xi, Yong-Zai</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Wei</au><au>Ben, Fang</au><au>Yin, Chang-Chun</au><au>Meng, Qing-Min</au><au>Li, Wen-Jie</au><au>Liao, Gui-Xiang</au><au>Wu, Shan</au><au>Xi, Yong-Zai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional arbitrarily anisotropic modeling for time-domain airborne electromagnetic surveys</atitle><jtitle>Applied geophysics</jtitle><stitle>Appl. Geophys</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>14</volume><issue>3</issue><spage>431</spage><epage>440</epage><pages>431-440</pages><issn>1672-7975</issn><eissn>1993-0658</eissn><abstract>Electrically anisotropic strata are abundant in nature, so their study can help our data interpretation and our understanding of the processes of geodynamics. However, current data processing generally assumes isotropic conditions when surveying anisotropic structures, which may cause discrepancies between reality and electromagnetic data interpretation. Moreover, the anisotropic interpretation of the time-domain airborne electromagnetic (TDAEM) method is still confined to one dimensional (1D) cases, and the corresponding three-dimensional (3D) numerical simulations are still in development. In this study, we expanded the 3D TDAEM modeling of arbitrarily anisotropic media. First, through coordinate rotation of isotropic conductivity, we obtained the conductivity tensor of an arbitrary anisotropic rock. Next, we incorporated this into Maxwell’s equations, using a regular hexahedral grid of vector finite elements to subdivide the solution area. A direct solver software package provided the solution for the sparse linear equations that resulted. Analytical solutions were used to verify the accuracy and feasibility of the algorithm. The proven model was then applied to analyze the effects of arbitrary anisotropy in 3D TDAEM via the distribution of responses and amplitude changes, which revealed that different anisotropy situations strongly affected the responses of TDAEM.</abstract><cop>Beijing</cop><pub>Chinese Geophysical Society</pub><doi>10.1007/s11770-017-0627-8</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1672-7975
ispartof Applied geophysics, 2017-09, Vol.14 (3), p.431-440
issn 1672-7975
1993-0658
language eng
recordid cdi_wanfang_journals_yydqwl201703011
source SpringerNature Journals; Alma/SFX Local Collection
subjects Anisotropic media
Anisotropic rocks
Anisotropy
Computer simulation
Computer software
Conductivity
Current data
Data analysis
Data interpretation
Data processing
Earth and Environmental Science
Earth Sciences
Electrical & Electromagnetic Methods
Feasibility studies
Geodynamics
Geophysics/Geodesy
Geotechnical Engineering & Applied Earth Sciences
Linear equations
Mathematical models
Modelling
Numerical simulations
Rotation
Surveying
Surveys
Tectonophysics
Three dimensional models
Time domain analysis
title Three-dimensional arbitrarily anisotropic modeling for time-domain airborne electromagnetic surveys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A28%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20arbitrarily%20anisotropic%20modeling%20for%20time-domain%20airborne%20electromagnetic%20surveys&rft.jtitle=Applied%20geophysics&rft.au=Huang,%20Wei&rft.date=2017-09-01&rft.volume=14&rft.issue=3&rft.spage=431&rft.epage=440&rft.pages=431-440&rft.issn=1672-7975&rft.eissn=1993-0658&rft_id=info:doi/10.1007/s11770-017-0627-8&rft_dat=%3Cwanfang_jour_proqu%3Eyydqwl201703011%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1957706911&rft_id=info:pmid/&rft_wanfj_id=yydqwl201703011&rfr_iscdi=true