Prestack nonstationary deconvolution based on variable- step sampling in the radial trace domain

The conventional nonstationary convolutional model assumes that the seismic signal is recorded at normal incidence. Raw shot gathers are far from this assumption because of the effects of offsets. Because of such problems, we propose a novel prestack nonstationary deconvolution approach. We introduc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied geophysics 2013-12, Vol.10 (4), p.423-432
Hauptverfasser: Li, Fang, Wang, Shou-Dong, Chen, Xiao-Hong, Liu, Guo-Chang, Zheng, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 432
container_issue 4
container_start_page 423
container_title Applied geophysics
container_volume 10
creator Li, Fang
Wang, Shou-Dong
Chen, Xiao-Hong
Liu, Guo-Chang
Zheng, Qiang
description The conventional nonstationary convolutional model assumes that the seismic signal is recorded at normal incidence. Raw shot gathers are far from this assumption because of the effects of offsets. Because of such problems, we propose a novel prestack nonstationary deconvolution approach. We introduce the radial trace (RT) transform to the nonstationary deconvolution, we estimate the nonstationary deconvolution factor with hyperbolic smoothing based on variable-step sampling (VSS) in the RT domain, and we obtain the high-resolution prestack nonstationary deconvolution data. The RT transform maps the shot record from the offset and traveltime coordinates to those of apparent velocity and traveltime. The ray paths of the traces in the RT better satisfy the assumptions of the convolutional model. The proposed method combines the advantages of stationary deconvolution and inverse Q filtering, without prior information for Q. The nonstationary deconvolution in the RT domain is more suitable than that in the space-time (XT) domain for prestack data because it is the generalized extension of normal incidence. Tests with synthetic and real data demonstrate that the proposed method is more effective in compensating for large-offset and deep data.
doi_str_mv 10.1007/s11770-013-0401-5
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_yydqwl201304006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>48336437</cqvip_id><wanfj_id>yydqwl201304006</wanfj_id><sourcerecordid>yydqwl201304006</sourcerecordid><originalsourceid>FETCH-LOGICAL-a397t-ff32d793bb5955f79e7495deaf556e88c4b52207fadfa67514a604475a4bdee83</originalsourceid><addsrcrecordid>eNp9kM1OxCAUhYnRRB19AHcYF66qUKCUpTH-JSa60DXeFpipdmAGOk7m7WVSo65ccbg5557cD6ETSi4oIfIyUSolKQhlBeGEFmIHHVCl8q8S9W7WlSwLqaTYR4cpvRNSsbLiB-jtOdo0QPuBffBZDF3wEDfY2Db4z9CvtgPcQLIGZ_EJsYOmtwVOg13gBPNF3_kp7jweZhZHMB30eIjQWmzCHDp_hPYc9Mkef78T9Hp783J9Xzw-3T1cXz0WwJQcCudYaaRiTSOUEE4qK7kSxoITorJ13fJGlCWRDoyDSgrKoSKcSwG8MdbWbILOx71r8A78VL-HVfS5UW82Zrnuy4wmk8l3T9DZ6FzEsFzl63-tVBBWbkGq7KKjq40hpWidXsRuntFoSvQWuR6R67xXb5FrkTPlmEnZ66c2_tn8T-j0u2gW_HSZcz9NvGas4kyyL_yRj4c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503217709</pqid></control><display><type>article</type><title>Prestack nonstationary deconvolution based on variable- step sampling in the radial trace domain</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Li, Fang ; Wang, Shou-Dong ; Chen, Xiao-Hong ; Liu, Guo-Chang ; Zheng, Qiang</creator><creatorcontrib>Li, Fang ; Wang, Shou-Dong ; Chen, Xiao-Hong ; Liu, Guo-Chang ; Zheng, Qiang</creatorcontrib><description>The conventional nonstationary convolutional model assumes that the seismic signal is recorded at normal incidence. Raw shot gathers are far from this assumption because of the effects of offsets. Because of such problems, we propose a novel prestack nonstationary deconvolution approach. We introduce the radial trace (RT) transform to the nonstationary deconvolution, we estimate the nonstationary deconvolution factor with hyperbolic smoothing based on variable-step sampling (VSS) in the RT domain, and we obtain the high-resolution prestack nonstationary deconvolution data. The RT transform maps the shot record from the offset and traveltime coordinates to those of apparent velocity and traveltime. The ray paths of the traces in the RT better satisfy the assumptions of the convolutional model. The proposed method combines the advantages of stationary deconvolution and inverse Q filtering, without prior information for Q. The nonstationary deconvolution in the RT domain is more suitable than that in the space-time (XT) domain for prestack data because it is the generalized extension of normal incidence. Tests with synthetic and real data demonstrate that the proposed method is more effective in compensating for large-offset and deep data.</description><identifier>ISSN: 1672-7975</identifier><identifier>EISSN: 1993-0658</identifier><identifier>DOI: 10.1007/s11770-013-0401-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Earth and Environmental Science ; Earth Sciences ; Geophysics/Geodesy ; Geotechnical Engineering &amp; Applied Earth Sciences ; Trace elements ; Travel time ; Variables ; Velocity ; 卷积模型 ; 变步长 ; 叠前数据 ; 垂直入射 ; 径向 ; 跟踪 ; 采样 ; 非平稳</subject><ispartof>Applied geophysics, 2013-12, Vol.10 (4), p.423-432</ispartof><rights>Editorial Office of Applied Geophysics and Springer-Verlag Berlin Heidelberg 2013</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a397t-ff32d793bb5955f79e7495deaf556e88c4b52207fadfa67514a604475a4bdee83</citedby><cites>FETCH-LOGICAL-a397t-ff32d793bb5955f79e7495deaf556e88c4b52207fadfa67514a604475a4bdee83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86859X/86859X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11770-013-0401-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11770-013-0401-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Wang, Shou-Dong</creatorcontrib><creatorcontrib>Chen, Xiao-Hong</creatorcontrib><creatorcontrib>Liu, Guo-Chang</creatorcontrib><creatorcontrib>Zheng, Qiang</creatorcontrib><title>Prestack nonstationary deconvolution based on variable- step sampling in the radial trace domain</title><title>Applied geophysics</title><addtitle>Appl. Geophys</addtitle><addtitle>Applied Geophysics</addtitle><description>The conventional nonstationary convolutional model assumes that the seismic signal is recorded at normal incidence. Raw shot gathers are far from this assumption because of the effects of offsets. Because of such problems, we propose a novel prestack nonstationary deconvolution approach. We introduce the radial trace (RT) transform to the nonstationary deconvolution, we estimate the nonstationary deconvolution factor with hyperbolic smoothing based on variable-step sampling (VSS) in the RT domain, and we obtain the high-resolution prestack nonstationary deconvolution data. The RT transform maps the shot record from the offset and traveltime coordinates to those of apparent velocity and traveltime. The ray paths of the traces in the RT better satisfy the assumptions of the convolutional model. The proposed method combines the advantages of stationary deconvolution and inverse Q filtering, without prior information for Q. The nonstationary deconvolution in the RT domain is more suitable than that in the space-time (XT) domain for prestack data because it is the generalized extension of normal incidence. Tests with synthetic and real data demonstrate that the proposed method is more effective in compensating for large-offset and deep data.</description><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Trace elements</subject><subject>Travel time</subject><subject>Variables</subject><subject>Velocity</subject><subject>卷积模型</subject><subject>变步长</subject><subject>叠前数据</subject><subject>垂直入射</subject><subject>径向</subject><subject>跟踪</subject><subject>采样</subject><subject>非平稳</subject><issn>1672-7975</issn><issn>1993-0658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1OxCAUhYnRRB19AHcYF66qUKCUpTH-JSa60DXeFpipdmAGOk7m7WVSo65ccbg5557cD6ETSi4oIfIyUSolKQhlBeGEFmIHHVCl8q8S9W7WlSwLqaTYR4cpvRNSsbLiB-jtOdo0QPuBffBZDF3wEDfY2Db4z9CvtgPcQLIGZ_EJsYOmtwVOg13gBPNF3_kp7jweZhZHMB30eIjQWmzCHDp_hPYc9Mkef78T9Hp783J9Xzw-3T1cXz0WwJQcCudYaaRiTSOUEE4qK7kSxoITorJ13fJGlCWRDoyDSgrKoSKcSwG8MdbWbILOx71r8A78VL-HVfS5UW82Zrnuy4wmk8l3T9DZ6FzEsFzl63-tVBBWbkGq7KKjq40hpWidXsRuntFoSvQWuR6R67xXb5FrkTPlmEnZ66c2_tn8T-j0u2gW_HSZcz9NvGas4kyyL_yRj4c</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Li, Fang</creator><creator>Wang, Shou-Dong</creator><creator>Chen, Xiao-Hong</creator><creator>Liu, Guo-Chang</creator><creator>Zheng, Qiang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum, Beijing 102249, China%CN00C Research Institute, Beijing 100027, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20131201</creationdate><title>Prestack nonstationary deconvolution based on variable- step sampling in the radial trace domain</title><author>Li, Fang ; Wang, Shou-Dong ; Chen, Xiao-Hong ; Liu, Guo-Chang ; Zheng, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a397t-ff32d793bb5955f79e7495deaf556e88c4b52207fadfa67514a604475a4bdee83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Trace elements</topic><topic>Travel time</topic><topic>Variables</topic><topic>Velocity</topic><topic>卷积模型</topic><topic>变步长</topic><topic>叠前数据</topic><topic>垂直入射</topic><topic>径向</topic><topic>跟踪</topic><topic>采样</topic><topic>非平稳</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Wang, Shou-Dong</creatorcontrib><creatorcontrib>Chen, Xiao-Hong</creatorcontrib><creatorcontrib>Liu, Guo-Chang</creatorcontrib><creatorcontrib>Zheng, Qiang</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Fang</au><au>Wang, Shou-Dong</au><au>Chen, Xiao-Hong</au><au>Liu, Guo-Chang</au><au>Zheng, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prestack nonstationary deconvolution based on variable- step sampling in the radial trace domain</atitle><jtitle>Applied geophysics</jtitle><stitle>Appl. Geophys</stitle><addtitle>Applied Geophysics</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>10</volume><issue>4</issue><spage>423</spage><epage>432</epage><pages>423-432</pages><issn>1672-7975</issn><eissn>1993-0658</eissn><abstract>The conventional nonstationary convolutional model assumes that the seismic signal is recorded at normal incidence. Raw shot gathers are far from this assumption because of the effects of offsets. Because of such problems, we propose a novel prestack nonstationary deconvolution approach. We introduce the radial trace (RT) transform to the nonstationary deconvolution, we estimate the nonstationary deconvolution factor with hyperbolic smoothing based on variable-step sampling (VSS) in the RT domain, and we obtain the high-resolution prestack nonstationary deconvolution data. The RT transform maps the shot record from the offset and traveltime coordinates to those of apparent velocity and traveltime. The ray paths of the traces in the RT better satisfy the assumptions of the convolutional model. The proposed method combines the advantages of stationary deconvolution and inverse Q filtering, without prior information for Q. The nonstationary deconvolution in the RT domain is more suitable than that in the space-time (XT) domain for prestack data because it is the generalized extension of normal incidence. Tests with synthetic and real data demonstrate that the proposed method is more effective in compensating for large-offset and deep data.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11770-013-0401-5</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1672-7975
ispartof Applied geophysics, 2013-12, Vol.10 (4), p.423-432
issn 1672-7975
1993-0658
language eng
recordid cdi_wanfang_journals_yydqwl201304006
source SpringerNature Journals; Alma/SFX Local Collection
subjects Earth and Environmental Science
Earth Sciences
Geophysics/Geodesy
Geotechnical Engineering & Applied Earth Sciences
Trace elements
Travel time
Variables
Velocity
卷积模型
变步长
叠前数据
垂直入射
径向
跟踪
采样
非平稳
title Prestack nonstationary deconvolution based on variable- step sampling in the radial trace domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T13%3A35%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prestack%20nonstationary%20deconvolution%20based%20on%20variable-%20step%20sampling%20in%20the%20radial%20trace%20domain&rft.jtitle=Applied%20geophysics&rft.au=Li,%20Fang&rft.date=2013-12-01&rft.volume=10&rft.issue=4&rft.spage=423&rft.epage=432&rft.pages=423-432&rft.issn=1672-7975&rft.eissn=1993-0658&rft_id=info:doi/10.1007/s11770-013-0401-5&rft_dat=%3Cwanfang_jour_proqu%3Eyydqwl201304006%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1503217709&rft_id=info:pmid/&rft_cqvip_id=48336437&rft_wanfj_id=yydqwl201304006&rfr_iscdi=true