PC-based artificial neural network inversion for airborne time-domain electromagnetic data
Traditionally, airborne time-domain electromagnetic (ATEM) data are inverted to derive the earth model by iteration. However, the data are often highly correlated among channels and consequently cause ill-posed and over-determined problems in the inversion. The correlation complicates the mapping re...
Gespeichert in:
Veröffentlicht in: | Applied geophysics 2012-03, Vol.9 (1), p.1-8 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Applied geophysics |
container_volume | 9 |
creator | Zhu, Kai-Guang Ma, Ming-Yao Che, Hong-Wei Yang, Er-Wei Ji, Yan-Ju Yu, Sheng-Bao Lin, Jun |
description | Traditionally, airborne time-domain electromagnetic (ATEM) data are inverted to derive the earth model by iteration. However, the data are often highly correlated among channels and consequently cause ill-posed and over-determined problems in the inversion. The correlation complicates the mapping relation between the ATEM data and the earth parameters and thus increases the inversion complexity. To obviate this, we adopt principal component analysis to transform ATEM data into orthogonal principal components (PCs) to reduce the correlations and the data dimensionality and simultaneously suppress the unrelated noise. In this paper, we use an artificial neural network (ANN) to approach the PCs mapping relation with the earth model parameters, avoiding the calculation of Jacobian derivatives. The PC-based ANN algorithm is applied to synthetic data for layered models compared with data-based ANN for airborne time-domain electromagnetic inversion. The results demonstrate the PC-based ANN advantages of simpler network structure, less training steps, and better inversion results over data-based ANN, especially for contaminated data. Furthermore, the PC-based ANN algorithm effectiveness is examined by the inversion of the pseudo 2D model and comparison with data-based ANN and Zhody's methods. The results indicate that PC-based ANN inversion can achieve a better agreement with the true model and also proved that PC-based ANN is feasible to invert large ATEM datasets. |
doi_str_mv | 10.1007/s11770-012-0307-7 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_yydqwl201201001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>41361502</cqvip_id><wanfj_id>yydqwl201201001</wanfj_id><sourcerecordid>yydqwl201201001</sourcerecordid><originalsourceid>FETCH-LOGICAL-a429t-cf62cadab4fc39e16e28b6ecebd10ffa6645aeb8e119183d7a47d923c1efb04a3</originalsourceid><addsrcrecordid>eNp9kTFvFDEQhVcIJELgB9AtNNAYPPauvS7RKZBIkaCAhsaa9Y4Phz07Z-9xun-Pw0ZBoqCaKb733mhe07wE_g441-8LgNaccRCMS66ZftScgTGScdUPj-uutGDa6P5p86yUG86VFKo7a75_2bARC00t5iX44ALObaRD_jOWY8o_2xB_US4hxdan3GLIY8qR2iXsiE1phyG2NJNbct23VRRcO-GCz5snHudCL-7nefPt48XXzSW7_vzpavPhmmEnzMKcV8LhhGPnnTQEisQwKnI0TsC9R6W6HmkcCMDAICeNnZ6MkA7Ij7xDed68WX2PGD3Grb1Jhxxroj2dpv1xFvUpvD4JKvl2JW9z2h-oLHYXiqN5xkjpUCxwIQbTgRYVff0P-uBqlOzNMPRdhWCFXE6lZPL2Nocd5lN1sne12LUWWy-wd7VYXTVi1ZTKxi3lv8b_E726D_qR4nZfdQ9JHUgFPRfyN0oxnAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963598854</pqid></control><display><type>article</type><title>PC-based artificial neural network inversion for airborne time-domain electromagnetic data</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Zhu, Kai-Guang ; Ma, Ming-Yao ; Che, Hong-Wei ; Yang, Er-Wei ; Ji, Yan-Ju ; Yu, Sheng-Bao ; Lin, Jun</creator><creatorcontrib>Zhu, Kai-Guang ; Ma, Ming-Yao ; Che, Hong-Wei ; Yang, Er-Wei ; Ji, Yan-Ju ; Yu, Sheng-Bao ; Lin, Jun</creatorcontrib><description>Traditionally, airborne time-domain electromagnetic (ATEM) data are inverted to derive the earth model by iteration. However, the data are often highly correlated among channels and consequently cause ill-posed and over-determined problems in the inversion. The correlation complicates the mapping relation between the ATEM data and the earth parameters and thus increases the inversion complexity. To obviate this, we adopt principal component analysis to transform ATEM data into orthogonal principal components (PCs) to reduce the correlations and the data dimensionality and simultaneously suppress the unrelated noise. In this paper, we use an artificial neural network (ANN) to approach the PCs mapping relation with the earth model parameters, avoiding the calculation of Jacobian derivatives. The PC-based ANN algorithm is applied to synthetic data for layered models compared with data-based ANN for airborne time-domain electromagnetic inversion. The results demonstrate the PC-based ANN advantages of simpler network structure, less training steps, and better inversion results over data-based ANN, especially for contaminated data. Furthermore, the PC-based ANN algorithm effectiveness is examined by the inversion of the pseudo 2D model and comparison with data-based ANN and Zhody's methods. The results indicate that PC-based ANN inversion can achieve a better agreement with the true model and also proved that PC-based ANN is feasible to invert large ATEM datasets.</description><identifier>ISSN: 1672-7975</identifier><identifier>EISSN: 1993-0658</identifier><identifier>DOI: 10.1007/s11770-012-0307-7</identifier><language>eng</language><publisher>Heidelberg: Chinese Geophysical Society</publisher><subject>Algorithms ; Correlation ; Earth ; Earth and Environmental Science ; Earth models ; Earth Sciences ; Electromagnetism ; Geophysics ; Geophysics/Geodesy ; Geotechnical Engineering & Applied Earth Sciences ; Inversions ; Learning theory ; Mathematical models ; Neural networks ; Personal computers ; Principal components analysis ; 主成分分析 ; 人工神经网络算法 ; 地球模型 ; 时间域 ; 电磁反演 ; 电磁数据 ; 空气</subject><ispartof>Applied geophysics, 2012-03, Vol.9 (1), p.1-8</ispartof><rights>Editorial Office of Applied Geophysics and Springer-Verlag Berlin Heidelberg 2012</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a429t-cf62cadab4fc39e16e28b6ecebd10ffa6645aeb8e119183d7a47d923c1efb04a3</citedby><cites>FETCH-LOGICAL-a429t-cf62cadab4fc39e16e28b6ecebd10ffa6645aeb8e119183d7a47d923c1efb04a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86859X/86859X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11770-012-0307-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11770-012-0307-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhu, Kai-Guang</creatorcontrib><creatorcontrib>Ma, Ming-Yao</creatorcontrib><creatorcontrib>Che, Hong-Wei</creatorcontrib><creatorcontrib>Yang, Er-Wei</creatorcontrib><creatorcontrib>Ji, Yan-Ju</creatorcontrib><creatorcontrib>Yu, Sheng-Bao</creatorcontrib><creatorcontrib>Lin, Jun</creatorcontrib><title>PC-based artificial neural network inversion for airborne time-domain electromagnetic data</title><title>Applied geophysics</title><addtitle>Appl. Geophys</addtitle><addtitle>Applied Geophysics</addtitle><description>Traditionally, airborne time-domain electromagnetic (ATEM) data are inverted to derive the earth model by iteration. However, the data are often highly correlated among channels and consequently cause ill-posed and over-determined problems in the inversion. The correlation complicates the mapping relation between the ATEM data and the earth parameters and thus increases the inversion complexity. To obviate this, we adopt principal component analysis to transform ATEM data into orthogonal principal components (PCs) to reduce the correlations and the data dimensionality and simultaneously suppress the unrelated noise. In this paper, we use an artificial neural network (ANN) to approach the PCs mapping relation with the earth model parameters, avoiding the calculation of Jacobian derivatives. The PC-based ANN algorithm is applied to synthetic data for layered models compared with data-based ANN for airborne time-domain electromagnetic inversion. The results demonstrate the PC-based ANN advantages of simpler network structure, less training steps, and better inversion results over data-based ANN, especially for contaminated data. Furthermore, the PC-based ANN algorithm effectiveness is examined by the inversion of the pseudo 2D model and comparison with data-based ANN and Zhody's methods. The results indicate that PC-based ANN inversion can achieve a better agreement with the true model and also proved that PC-based ANN is feasible to invert large ATEM datasets.</description><subject>Algorithms</subject><subject>Correlation</subject><subject>Earth</subject><subject>Earth and Environmental Science</subject><subject>Earth models</subject><subject>Earth Sciences</subject><subject>Electromagnetism</subject><subject>Geophysics</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Inversions</subject><subject>Learning theory</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Personal computers</subject><subject>Principal components analysis</subject><subject>主成分分析</subject><subject>人工神经网络算法</subject><subject>地球模型</subject><subject>时间域</subject><subject>电磁反演</subject><subject>电磁数据</subject><subject>空气</subject><issn>1672-7975</issn><issn>1993-0658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kTFvFDEQhVcIJELgB9AtNNAYPPauvS7RKZBIkaCAhsaa9Y4Phz07Z-9xun-Pw0ZBoqCaKb733mhe07wE_g441-8LgNaccRCMS66ZftScgTGScdUPj-uutGDa6P5p86yUG86VFKo7a75_2bARC00t5iX44ALObaRD_jOWY8o_2xB_US4hxdan3GLIY8qR2iXsiE1phyG2NJNbct23VRRcO-GCz5snHudCL-7nefPt48XXzSW7_vzpavPhmmEnzMKcV8LhhGPnnTQEisQwKnI0TsC9R6W6HmkcCMDAICeNnZ6MkA7Ij7xDed68WX2PGD3Grb1Jhxxroj2dpv1xFvUpvD4JKvl2JW9z2h-oLHYXiqN5xkjpUCxwIQbTgRYVff0P-uBqlOzNMPRdhWCFXE6lZPL2Nocd5lN1sne12LUWWy-wd7VYXTVi1ZTKxi3lv8b_E726D_qR4nZfdQ9JHUgFPRfyN0oxnAQ</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Zhu, Kai-Guang</creator><creator>Ma, Ming-Yao</creator><creator>Che, Hong-Wei</creator><creator>Yang, Er-Wei</creator><creator>Ji, Yan-Ju</creator><creator>Yu, Sheng-Bao</creator><creator>Lin, Jun</creator><general>Chinese Geophysical Society</general><general>Springer Nature B.V</general><general>Key Laboratory of Geo-exploration Instrumentation, College of Instrumentation and Electrical Engineering Changchun,Jilin University, Changchun, Jilin, 130026, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20120301</creationdate><title>PC-based artificial neural network inversion for airborne time-domain electromagnetic data</title><author>Zhu, Kai-Guang ; Ma, Ming-Yao ; Che, Hong-Wei ; Yang, Er-Wei ; Ji, Yan-Ju ; Yu, Sheng-Bao ; Lin, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a429t-cf62cadab4fc39e16e28b6ecebd10ffa6645aeb8e119183d7a47d923c1efb04a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Correlation</topic><topic>Earth</topic><topic>Earth and Environmental Science</topic><topic>Earth models</topic><topic>Earth Sciences</topic><topic>Electromagnetism</topic><topic>Geophysics</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Inversions</topic><topic>Learning theory</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Personal computers</topic><topic>Principal components analysis</topic><topic>主成分分析</topic><topic>人工神经网络算法</topic><topic>地球模型</topic><topic>时间域</topic><topic>电磁反演</topic><topic>电磁数据</topic><topic>空气</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Kai-Guang</creatorcontrib><creatorcontrib>Ma, Ming-Yao</creatorcontrib><creatorcontrib>Che, Hong-Wei</creatorcontrib><creatorcontrib>Yang, Er-Wei</creatorcontrib><creatorcontrib>Ji, Yan-Ju</creatorcontrib><creatorcontrib>Yu, Sheng-Bao</creatorcontrib><creatorcontrib>Lin, Jun</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Kai-Guang</au><au>Ma, Ming-Yao</au><au>Che, Hong-Wei</au><au>Yang, Er-Wei</au><au>Ji, Yan-Ju</au><au>Yu, Sheng-Bao</au><au>Lin, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PC-based artificial neural network inversion for airborne time-domain electromagnetic data</atitle><jtitle>Applied geophysics</jtitle><stitle>Appl. Geophys</stitle><addtitle>Applied Geophysics</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>9</volume><issue>1</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1672-7975</issn><eissn>1993-0658</eissn><abstract>Traditionally, airborne time-domain electromagnetic (ATEM) data are inverted to derive the earth model by iteration. However, the data are often highly correlated among channels and consequently cause ill-posed and over-determined problems in the inversion. The correlation complicates the mapping relation between the ATEM data and the earth parameters and thus increases the inversion complexity. To obviate this, we adopt principal component analysis to transform ATEM data into orthogonal principal components (PCs) to reduce the correlations and the data dimensionality and simultaneously suppress the unrelated noise. In this paper, we use an artificial neural network (ANN) to approach the PCs mapping relation with the earth model parameters, avoiding the calculation of Jacobian derivatives. The PC-based ANN algorithm is applied to synthetic data for layered models compared with data-based ANN for airborne time-domain electromagnetic inversion. The results demonstrate the PC-based ANN advantages of simpler network structure, less training steps, and better inversion results over data-based ANN, especially for contaminated data. Furthermore, the PC-based ANN algorithm effectiveness is examined by the inversion of the pseudo 2D model and comparison with data-based ANN and Zhody's methods. The results indicate that PC-based ANN inversion can achieve a better agreement with the true model and also proved that PC-based ANN is feasible to invert large ATEM datasets.</abstract><cop>Heidelberg</cop><pub>Chinese Geophysical Society</pub><doi>10.1007/s11770-012-0307-7</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1672-7975 |
ispartof | Applied geophysics, 2012-03, Vol.9 (1), p.1-8 |
issn | 1672-7975 1993-0658 |
language | eng |
recordid | cdi_wanfang_journals_yydqwl201201001 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Algorithms Correlation Earth Earth and Environmental Science Earth models Earth Sciences Electromagnetism Geophysics Geophysics/Geodesy Geotechnical Engineering & Applied Earth Sciences Inversions Learning theory Mathematical models Neural networks Personal computers Principal components analysis 主成分分析 人工神经网络算法 地球模型 时间域 电磁反演 电磁数据 空气 |
title | PC-based artificial neural network inversion for airborne time-domain electromagnetic data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A38%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PC-based%20artificial%20neural%20network%20inversion%20for%20airborne%20time-domain%20electromagnetic%20data&rft.jtitle=Applied%20geophysics&rft.au=Zhu,%20Kai-Guang&rft.date=2012-03-01&rft.volume=9&rft.issue=1&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1672-7975&rft.eissn=1993-0658&rft_id=info:doi/10.1007/s11770-012-0307-7&rft_dat=%3Cwanfang_jour_proqu%3Eyydqwl201201001%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963598854&rft_id=info:pmid/&rft_cqvip_id=41361502&rft_wanfj_id=yydqwl201201001&rfr_iscdi=true |