一元线性回归模型的参数估计法的误差分析
对横向距离平方和最小法与最小二乘法的误差进行分析,发现二者的误差大小与拟合直线的斜率有关.这两种方法的参数估计表达式与最小距离平方和法的参数估计表达式有相应的关系.通过举例比较和讨论了这三种数据拟合方法的优劣,并分别给出了较合理的应用控制条件....
Gespeichert in:
Veröffentlicht in: | 宜宾学院学报 2014-12, Vol.14 (12), p.18-21 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21 |
---|---|
container_issue | 12 |
container_start_page | 18 |
container_title | 宜宾学院学报 |
container_volume | 14 |
creator | 唐薇 冯长焕 |
description | 对横向距离平方和最小法与最小二乘法的误差进行分析,发现二者的误差大小与拟合直线的斜率有关.这两种方法的参数估计表达式与最小距离平方和法的参数估计表达式有相应的关系.通过举例比较和讨论了这三种数据拟合方法的优劣,并分别给出了较合理的应用控制条件. |
format | Article |
fullrecord | <record><control><sourceid>cass_wanfa</sourceid><recordid>TN_cdi_wanfang_journals_ybxyxb201412005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cass_id>663709732</cass_id><cqvip_id>663709732</cqvip_id><wanfj_id>ybxyxb201412005</wanfj_id><sourcerecordid>663709732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c785-483e2ab4fadd3de38b4dd4ece6c03f3fc608b088aba61a3d41f5ae2ade86e733</originalsourceid><addsrcrecordid>eNpNjT9LAzEAxTMoWGq_gKOL00FyyeXSUYr_oOCg-5FcknqiV70g9rbiP4QOitBF4aCTTm3BQRHFL9Nc-zEMtIPTg_d-770lUEE0RF6AabACasYkAkKEIGKMVEB98tm1t9fTr9-y-2pfCvvzVL4NbNGbPt_Yh6uyP558j2fDQfned85sNLIfQ3t_VxaPq2BZ8xOjagutgoPtrcPGrtfc39lrbDa9OGSBRxhWPhdEcymxVJgJIiVRsaIxxBrrmEImIGNccIo4lgTpgLuGVIyqEOMq2JivXvJU87QVHbcvstT9Rbno5B3hQ0SQD2HgyLU5GXNjotQYGVGKQ1gPse_C9UV41E5b54kbOsuSU57l_6A_qdFrUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>一元线性回归模型的参数估计法的误差分析</title><source>National Center for Philosophy and Social Science Documentation (China)</source><creator>唐薇 冯长焕</creator><creatorcontrib>唐薇 冯长焕</creatorcontrib><description>对横向距离平方和最小法与最小二乘法的误差进行分析,发现二者的误差大小与拟合直线的斜率有关.这两种方法的参数估计表达式与最小距离平方和法的参数估计表达式有相应的关系.通过举例比较和讨论了这三种数据拟合方法的优劣,并分别给出了较合理的应用控制条件.</description><identifier>ISSN: 1671-5365</identifier><language>chi</language><publisher>宜宾学院</publisher><subject>参数估计 ; 回归分析 ; 最小二乘法 ; 横向距离平方和最小法</subject><ispartof>宜宾学院学报, 2014-12, Vol.14 (12), p.18-21</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/83424A/83424A.jpg</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>唐薇 冯长焕</creatorcontrib><title>一元线性回归模型的参数估计法的误差分析</title><title>宜宾学院学报</title><description>对横向距离平方和最小法与最小二乘法的误差进行分析,发现二者的误差大小与拟合直线的斜率有关.这两种方法的参数估计表达式与最小距离平方和法的参数估计表达式有相应的关系.通过举例比较和讨论了这三种数据拟合方法的优劣,并分别给出了较合理的应用控制条件.</description><subject>参数估计</subject><subject>回归分析</subject><subject>最小二乘法</subject><subject>横向距离平方和最小法</subject><issn>1671-5365</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpNjT9LAzEAxTMoWGq_gKOL00FyyeXSUYr_oOCg-5FcknqiV70g9rbiP4QOitBF4aCTTm3BQRHFL9Nc-zEMtIPTg_d-770lUEE0RF6AabACasYkAkKEIGKMVEB98tm1t9fTr9-y-2pfCvvzVL4NbNGbPt_Yh6uyP558j2fDQfned85sNLIfQ3t_VxaPq2BZ8xOjagutgoPtrcPGrtfc39lrbDa9OGSBRxhWPhdEcymxVJgJIiVRsaIxxBrrmEImIGNccIo4lgTpgLuGVIyqEOMq2JivXvJU87QVHbcvstT9Rbno5B3hQ0SQD2HgyLU5GXNjotQYGVGKQ1gPse_C9UV41E5b54kbOsuSU57l_6A_qdFrUg</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>唐薇 冯长焕</creator><general>宜宾学院</general><general>西华师范大学数学与信息学院,四川南充,637002</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>NSCOK</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20141201</creationdate><title>一元线性回归模型的参数估计法的误差分析</title><author>唐薇 冯长焕</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c785-483e2ab4fadd3de38b4dd4ece6c03f3fc608b088aba61a3d41f5ae2ade86e733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2014</creationdate><topic>参数估计</topic><topic>回归分析</topic><topic>最小二乘法</topic><topic>横向距离平方和最小法</topic><toplevel>online_resources</toplevel><creatorcontrib>唐薇 冯长焕</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>国家哲学社会科学文献中心 (National Center for Philosophy and Social Sciences Documentation)</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>宜宾学院学报</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>唐薇 冯长焕</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>一元线性回归模型的参数估计法的误差分析</atitle><jtitle>宜宾学院学报</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>14</volume><issue>12</issue><spage>18</spage><epage>21</epage><pages>18-21</pages><issn>1671-5365</issn><abstract>对横向距离平方和最小法与最小二乘法的误差进行分析,发现二者的误差大小与拟合直线的斜率有关.这两种方法的参数估计表达式与最小距离平方和法的参数估计表达式有相应的关系.通过举例比较和讨论了这三种数据拟合方法的优劣,并分别给出了较合理的应用控制条件.</abstract><pub>宜宾学院</pub><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1671-5365 |
ispartof | 宜宾学院学报, 2014-12, Vol.14 (12), p.18-21 |
issn | 1671-5365 |
language | chi |
recordid | cdi_wanfang_journals_ybxyxb201412005 |
source | National Center for Philosophy and Social Science Documentation (China) |
subjects | 参数估计 回归分析 最小二乘法 横向距离平方和最小法 |
title | 一元线性回归模型的参数估计法的误差分析 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T23%3A55%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cass_wanfa&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E4%B8%80%E5%85%83%E7%BA%BF%E6%80%A7%E5%9B%9E%E5%BD%92%E6%A8%A1%E5%9E%8B%E7%9A%84%E5%8F%82%E6%95%B0%E4%BC%B0%E8%AE%A1%E6%B3%95%E7%9A%84%E8%AF%AF%E5%B7%AE%E5%88%86%E6%9E%90&rft.jtitle=%E5%AE%9C%E5%AE%BE%E5%AD%A6%E9%99%A2%E5%AD%A6%E6%8A%A5&rft.au=%E5%94%90%E8%96%87%20%E5%86%AF%E9%95%BF%E7%84%95&rft.date=2014-12-01&rft.volume=14&rft.issue=12&rft.spage=18&rft.epage=21&rft.pages=18-21&rft.issn=1671-5365&rft_id=info:doi/&rft_dat=%3Ccass_wanfa%3E663709732%3C/cass_wanfa%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cass_id=663709732&rft_cqvip_id=663709732&rft_wanfj_id=ybxyxb201412005&rfr_iscdi=true |