导数在证明不等式上的应用
导数常见的应用,一般都表现在判断函数的单调性、求函数的极值、判断函数的凹凸性、求曲线的拐点以及求曲线的渐近线等几方面。本文将介绍导数在证明不等式方面的应用,下面大家将会看到,利用导数来证明某些不等式,有时是非常快捷的。...
Gespeichert in:
Veröffentlicht in: | 邢台职业技术学院学报 2005-02, Vol.22 (1), p.73-73 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 73 |
---|---|
container_issue | 1 |
container_start_page | 73 |
container_title | 邢台职业技术学院学报 |
container_volume | 22 |
creator | 刘宁 |
description | 导数常见的应用,一般都表现在判断函数的单调性、求函数的极值、判断函数的凹凸性、求曲线的拐点以及求曲线的渐近线等几方面。本文将介绍导数在证明不等式方面的应用,下面大家将会看到,利用导数来证明某些不等式,有时是非常快捷的。 |
doi_str_mv | 10.3969/j.issn.1008-6129.2005.01.027 |
format | Article |
fullrecord | <record><control><sourceid>cass_wanfa</sourceid><recordid>TN_cdi_wanfang_journals_xtzyjsxyxb200501027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cass_id>15487556</cass_id><cqvip_id>15487556</cqvip_id><wanfj_id>xtzyjsxyxb200501027</wanfj_id><sourcerecordid>15487556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c817-ec9a2f562ed0f96df2d947ea91098850a5b88d02b46afd54f393e9ab2773581c3</originalsourceid><addsrcrecordid>eNpFj81KAzEcxHNQsNQ-gFfpTTb-k91kk6MUv6Dgpfcl2WzqrmWLRrH1JnhRUC8VRHyAXqQei_Rxul0fw5UWPQ3M_JhhEGoSwL7kcjfDqXM5JgDC44RKTAEYBoKBhmuo9udvoIZzqQbgjBNJeA01i8ls8fJZvI-_J7eL16f59LH8uC9mz_PpQ_l2V3yNytF4E61b1XNJY6V11DnY77SOvPbJ4XFrr-3FgoReEktFLeM0MWAlN5YaGYSJkgSkEAwU00IYoDrgyhoWWF_6iVSahqHPBIn9OtpZ1l6r3Kq8G2X9q4u8GowGlzfDzA2GA_17DEh1q6K3lnSsnIty50xEWCBCxniVba-y037ePU-rLq3iM5v2kn_oBwfzZWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>导数在证明不等式上的应用</title><source>国家哲学社会科学学术期刊数据库 (National Social Sciences Database)</source><creator>刘宁</creator><creatorcontrib>刘宁</creatorcontrib><description>导数常见的应用,一般都表现在判断函数的单调性、求函数的极值、判断函数的凹凸性、求曲线的拐点以及求曲线的渐近线等几方面。本文将介绍导数在证明不等式方面的应用,下面大家将会看到,利用导数来证明某些不等式,有时是非常快捷的。</description><identifier>ISSN: 1008-6129</identifier><identifier>DOI: 10.3969/j.issn.1008-6129.2005.01.027</identifier><language>chi</language><publisher>邢台职业技术学院</publisher><subject>不等式证明 ; 函数 ; 导数 ; 无限区间</subject><ispartof>邢台职业技术学院学报, 2005-02, Vol.22 (1), p.73-73</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85122X/85122X.jpg</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>刘宁</creatorcontrib><title>导数在证明不等式上的应用</title><title>邢台职业技术学院学报</title><addtitle>Xingtai Vocational and Technical College</addtitle><description>导数常见的应用,一般都表现在判断函数的单调性、求函数的极值、判断函数的凹凸性、求曲线的拐点以及求曲线的渐近线等几方面。本文将介绍导数在证明不等式方面的应用,下面大家将会看到,利用导数来证明某些不等式,有时是非常快捷的。</description><subject>不等式证明</subject><subject>函数</subject><subject>导数</subject><subject>无限区间</subject><issn>1008-6129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpFj81KAzEcxHNQsNQ-gFfpTTb-k91kk6MUv6Dgpfcl2WzqrmWLRrH1JnhRUC8VRHyAXqQei_Rxul0fw5UWPQ3M_JhhEGoSwL7kcjfDqXM5JgDC44RKTAEYBoKBhmuo9udvoIZzqQbgjBNJeA01i8ls8fJZvI-_J7eL16f59LH8uC9mz_PpQ_l2V3yNytF4E61b1XNJY6V11DnY77SOvPbJ4XFrr-3FgoReEktFLeM0MWAlN5YaGYSJkgSkEAwU00IYoDrgyhoWWF_6iVSahqHPBIn9OtpZ1l6r3Kq8G2X9q4u8GowGlzfDzA2GA_17DEh1q6K3lnSsnIty50xEWCBCxniVba-y037ePU-rLq3iM5v2kn_oBwfzZWA</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>刘宁</creator><general>邢台职业技术学院</general><general>辽宁工程技术大学技术与经济学院副教授,123000</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>NSCOK</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20050201</creationdate><title>导数在证明不等式上的应用</title><author>刘宁</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c817-ec9a2f562ed0f96df2d947ea91098850a5b88d02b46afd54f393e9ab2773581c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2005</creationdate><topic>不等式证明</topic><topic>函数</topic><topic>导数</topic><topic>无限区间</topic><toplevel>online_resources</toplevel><creatorcontrib>刘宁</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>国家哲学社会科学文献中心 (National Center for Philosophy and Social Sciences Documentation)</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>邢台职业技术学院学报</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>刘宁</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>导数在证明不等式上的应用</atitle><jtitle>邢台职业技术学院学报</jtitle><addtitle>Xingtai Vocational and Technical College</addtitle><date>2005-02-01</date><risdate>2005</risdate><volume>22</volume><issue>1</issue><spage>73</spage><epage>73</epage><pages>73-73</pages><issn>1008-6129</issn><abstract>导数常见的应用,一般都表现在判断函数的单调性、求函数的极值、判断函数的凹凸性、求曲线的拐点以及求曲线的渐近线等几方面。本文将介绍导数在证明不等式方面的应用,下面大家将会看到,利用导数来证明某些不等式,有时是非常快捷的。</abstract><pub>邢台职业技术学院</pub><doi>10.3969/j.issn.1008-6129.2005.01.027</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1008-6129 |
ispartof | 邢台职业技术学院学报, 2005-02, Vol.22 (1), p.73-73 |
issn | 1008-6129 |
language | chi |
recordid | cdi_wanfang_journals_xtzyjsxyxb200501027 |
source | 国家哲学社会科学学术期刊数据库 (National Social Sciences Database) |
subjects | 不等式证明 函数 导数 无限区间 |
title | 导数在证明不等式上的应用 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A56%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cass_wanfa&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E5%AF%BC%E6%95%B0%E5%9C%A8%E8%AF%81%E6%98%8E%E4%B8%8D%E7%AD%89%E5%BC%8F%E4%B8%8A%E7%9A%84%E5%BA%94%E7%94%A8&rft.jtitle=%E9%82%A2%E5%8F%B0%E8%81%8C%E4%B8%9A%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%E5%AD%A6%E6%8A%A5&rft.au=%E5%88%98%E5%AE%81&rft.date=2005-02-01&rft.volume=22&rft.issue=1&rft.spage=73&rft.epage=73&rft.pages=73-73&rft.issn=1008-6129&rft_id=info:doi/10.3969/j.issn.1008-6129.2005.01.027&rft_dat=%3Ccass_wanfa%3E15487556%3C/cass_wanfa%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cass_id=15487556&rft_cqvip_id=15487556&rft_wanfj_id=xtzyjsxyxb200501027&rfr_iscdi=true |