Robust Least Squares Projection Twin SVM and its Sparse Solution
Least squares projection twin support vector machine(LSPTSVM) has faster computing speed than classical least squares support vector machine(LSSVM). However, LSPTSVM is sensitive to outliers and its solution lacks sparsity. Therefore, it is difficult for LSPTSVM to process large-scale datasets with...
Gespeichert in:
Veröffentlicht in: | Journal of systems engineering and electronics 2023-08, Vol.34 (4), p.827-838 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 838 |
---|---|
container_issue | 4 |
container_start_page | 827 |
container_title | Journal of systems engineering and electronics |
container_volume | 34 |
creator | Zhou, Shuisheng Zhang, Wenmeng Chen, Li Xu, Mingliang |
description | Least squares projection twin support vector machine(LSPTSVM) has faster computing speed than classical least squares support vector machine(LSSVM). However, LSPTSVM is sensitive to outliers and its solution lacks sparsity. Therefore, it is difficult for LSPTSVM to process large-scale datasets with outliers. In this paper, we propose a robust LSPTSVM model(called R-LSPTSVM) by applying truncated least squares loss function. The robustness of R-LSPTSVM is proved from a weighted perspective. Furthermore, we obtain the sparse solu-tion of R-LSPTSVM by using the pivoting Cholesky factorization method in primal space. Finally, the sparse R-LSPTSVM algo-rithm(SR-LSPTSVM) is proposed. Experimental results show that SR-LSPTSVM is insensitive to outliers and can deal with large-scale datasets fastly. |
doi_str_mv | 10.23919/JSEE.2023.000103 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_xtgcydzjs_e202304003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>xtgcydzjs_e202304003</wanfj_id><sourcerecordid>xtgcydzjs_e202304003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-f87aa951e5cd55b9b5effd495d4b87ee835edfe832e2dff69d361ed26d378ce33</originalsourceid><addsrcrecordid>eNpNkMFOwzAMhiMEEtPYA3DLA9DiJM3a3kDTYKAiEB1co7RxplajHUmrMZ6elXLAB_8-fLalj5BLBiEXKUuvH_PlMuTARQgADMQJmTCAKIiY4Kf_5nMy876GoWLgHCbk5rUtet_RDPWx55-9dujpi2trLLuqbeh6XzU0f3-iujG06jzNd9p5pHm77QfggpxZvfU4-8spebtbrherIHu-f1jcZkHJ47gLbBJrnUqGsjRSFmkh0VoTpdJERRIjJkKiscfgyI2189SIOUPD50bESYlCTMnVeHevG6ubjarb3jXHj-qr25QH8117hYMCiAAGnI146VrvHVq1c9WHdgfFQP1KU4M0NWyoUZr4AZv_X5o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Robust Least Squares Projection Twin SVM and its Sparse Solution</title><source>IEEE Power & Energy Library</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhou, Shuisheng ; Zhang, Wenmeng ; Chen, Li ; Xu, Mingliang</creator><creatorcontrib>Zhou, Shuisheng ; Zhang, Wenmeng ; Chen, Li ; Xu, Mingliang</creatorcontrib><description>Least squares projection twin support vector machine(LSPTSVM) has faster computing speed than classical least squares support vector machine(LSSVM). However, LSPTSVM is sensitive to outliers and its solution lacks sparsity. Therefore, it is difficult for LSPTSVM to process large-scale datasets with outliers. In this paper, we propose a robust LSPTSVM model(called R-LSPTSVM) by applying truncated least squares loss function. The robustness of R-LSPTSVM is proved from a weighted perspective. Furthermore, we obtain the sparse solu-tion of R-LSPTSVM by using the pivoting Cholesky factorization method in primal space. Finally, the sparse R-LSPTSVM algo-rithm(SR-LSPTSVM) is proposed. Experimental results show that SR-LSPTSVM is insensitive to outliers and can deal with large-scale datasets fastly.</description><identifier>ISSN: 1004-4132</identifier><identifier>EISSN: 1004-4132</identifier><identifier>DOI: 10.23919/JSEE.2023.000103</identifier><language>eng</language><publisher>School of Mathematics and Statistics, Xidian University, Xi'an 710126, China%School of Physical Education, Zhengzhou University, Zhengzhou 450001, China</publisher><ispartof>Journal of systems engineering and electronics, 2023-08, Vol.34 (4), p.827-838</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c277t-f87aa951e5cd55b9b5effd495d4b87ee835edfe832e2dff69d361ed26d378ce33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/xtgcydzjs-e/xtgcydzjs-e.jpg</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zhou, Shuisheng</creatorcontrib><creatorcontrib>Zhang, Wenmeng</creatorcontrib><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Xu, Mingliang</creatorcontrib><title>Robust Least Squares Projection Twin SVM and its Sparse Solution</title><title>Journal of systems engineering and electronics</title><description>Least squares projection twin support vector machine(LSPTSVM) has faster computing speed than classical least squares support vector machine(LSSVM). However, LSPTSVM is sensitive to outliers and its solution lacks sparsity. Therefore, it is difficult for LSPTSVM to process large-scale datasets with outliers. In this paper, we propose a robust LSPTSVM model(called R-LSPTSVM) by applying truncated least squares loss function. The robustness of R-LSPTSVM is proved from a weighted perspective. Furthermore, we obtain the sparse solu-tion of R-LSPTSVM by using the pivoting Cholesky factorization method in primal space. Finally, the sparse R-LSPTSVM algo-rithm(SR-LSPTSVM) is proposed. Experimental results show that SR-LSPTSVM is insensitive to outliers and can deal with large-scale datasets fastly.</description><issn>1004-4132</issn><issn>1004-4132</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkMFOwzAMhiMEEtPYA3DLA9DiJM3a3kDTYKAiEB1co7RxplajHUmrMZ6elXLAB_8-fLalj5BLBiEXKUuvH_PlMuTARQgADMQJmTCAKIiY4Kf_5nMy876GoWLgHCbk5rUtet_RDPWx55-9dujpi2trLLuqbeh6XzU0f3-iujG06jzNd9p5pHm77QfggpxZvfU4-8spebtbrherIHu-f1jcZkHJ47gLbBJrnUqGsjRSFmkh0VoTpdJERRIjJkKiscfgyI2189SIOUPD50bESYlCTMnVeHevG6ubjarb3jXHj-qr25QH8117hYMCiAAGnI146VrvHVq1c9WHdgfFQP1KU4M0NWyoUZr4AZv_X5o</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Zhou, Shuisheng</creator><creator>Zhang, Wenmeng</creator><creator>Chen, Li</creator><creator>Xu, Mingliang</creator><general>School of Mathematics and Statistics, Xidian University, Xi'an 710126, China%School of Physical Education, Zhengzhou University, Zhengzhou 450001, China</general><general>School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China%School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20230801</creationdate><title>Robust Least Squares Projection Twin SVM and its Sparse Solution</title><author>Zhou, Shuisheng ; Zhang, Wenmeng ; Chen, Li ; Xu, Mingliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-f87aa951e5cd55b9b5effd495d4b87ee835edfe832e2dff69d361ed26d378ce33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Shuisheng</creatorcontrib><creatorcontrib>Zhang, Wenmeng</creatorcontrib><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Xu, Mingliang</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of systems engineering and electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Shuisheng</au><au>Zhang, Wenmeng</au><au>Chen, Li</au><au>Xu, Mingliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Least Squares Projection Twin SVM and its Sparse Solution</atitle><jtitle>Journal of systems engineering and electronics</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>34</volume><issue>4</issue><spage>827</spage><epage>838</epage><pages>827-838</pages><issn>1004-4132</issn><eissn>1004-4132</eissn><abstract>Least squares projection twin support vector machine(LSPTSVM) has faster computing speed than classical least squares support vector machine(LSSVM). However, LSPTSVM is sensitive to outliers and its solution lacks sparsity. Therefore, it is difficult for LSPTSVM to process large-scale datasets with outliers. In this paper, we propose a robust LSPTSVM model(called R-LSPTSVM) by applying truncated least squares loss function. The robustness of R-LSPTSVM is proved from a weighted perspective. Furthermore, we obtain the sparse solu-tion of R-LSPTSVM by using the pivoting Cholesky factorization method in primal space. Finally, the sparse R-LSPTSVM algo-rithm(SR-LSPTSVM) is proposed. Experimental results show that SR-LSPTSVM is insensitive to outliers and can deal with large-scale datasets fastly.</abstract><pub>School of Mathematics and Statistics, Xidian University, Xi'an 710126, China%School of Physical Education, Zhengzhou University, Zhengzhou 450001, China</pub><doi>10.23919/JSEE.2023.000103</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1004-4132 |
ispartof | Journal of systems engineering and electronics, 2023-08, Vol.34 (4), p.827-838 |
issn | 1004-4132 1004-4132 |
language | eng |
recordid | cdi_wanfang_journals_xtgcydzjs_e202304003 |
source | IEEE Power & Energy Library; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Robust Least Squares Projection Twin SVM and its Sparse Solution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A02%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Least%20Squares%20Projection%20Twin%20SVM%20and%20its%20Sparse%20Solution&rft.jtitle=Journal%20of%20systems%20engineering%20and%20electronics&rft.au=Zhou,%20Shuisheng&rft.date=2023-08-01&rft.volume=34&rft.issue=4&rft.spage=827&rft.epage=838&rft.pages=827-838&rft.issn=1004-4132&rft.eissn=1004-4132&rft_id=info:doi/10.23919/JSEE.2023.000103&rft_dat=%3Cwanfang_jour_cross%3Extgcydzjs_e202304003%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=xtgcydzjs_e202304003&rfr_iscdi=true |