A DNN based trajectory optimization method for intercepting non-cooperative maneuvering spacecraft
Current successes in artificial intelligence domain have revitalized interest in neural networks and demonstrated their potential in solving spacecraft trajectory optimization prob-lems. This paper presents a data-free deep neural network (DNN) based trajectory optimization method for intercepting n...
Gespeichert in:
Veröffentlicht in: | Journal of systems engineering and electronics 2022-04, Vol.33 (2), p.438-446 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 446 |
---|---|
container_issue | 2 |
container_start_page | 438 |
container_title | Journal of systems engineering and electronics |
container_volume | 33 |
creator | Yang, Fuyunxiang Yang, Leping Zhu, Yanwei Zeng, Xin |
description | Current successes in artificial intelligence domain have revitalized interest in neural networks and demonstrated their potential in solving spacecraft trajectory optimization prob-lems. This paper presents a data-free deep neural network (DNN) based trajectory optimization method for intercepting non-cooperative maneuvering spacecraft, in a continuous low-thrust scenario. Firstly, the problem is formulated as a standard con-strained optimization problem through differential game theory and minimax principle. Secondly, a new DNN is designed to in-tegrate interception dynamic model into the network and involve it in the process of gradient descent, which makes the network endowed with the knowledge of physical constraints and re-duces the learning burden of the network. Thus, a DNN based method is proposed, which completely eliminates the demand of training datasets and improves the generalization capacity. Fi-nally, numerical results demonstrate the feasibility and efficiency of our proposed method. |
doi_str_mv | 10.23919/JSEE.2022.000044 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_xtgcydzjs_e202202019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>xtgcydzjs_e202202019</wanfj_id><sourcerecordid>xtgcydzjs_e202202019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-3a36b91a43a203d92d86405597cbc55ebe6ae4de11f48cd62a86b7f02254a3503</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EElXpB7DzB5DiV9JmWZXyUlUWwNqaOJOSiNiR4xbar8ehLJjNHememdFcQq45mwqZ8_z2-XW1mgomxJTFUuqMjHjURHEpzv_1l2TS983AsFmk2YgUC3q32dACeixp8NCgCc4fqOtC3dZHCLWztMXw4UpaOU9rG9AbjK7dUutsYpzr0Eduj7QFi7s9-sHrOzBoPFThilxU8Nnj5E_H5P1-9bZ8TNYvD0_LxToxUqQhkSCzIuegJAgmy1yU80yxNM1npjBpigVmgKpEzis1N2UmYJ4Vsyq-kSqQKZNjcnPa-wW2ArvVjdt5Gy_q77A1h_LY9BqHkJhgPI84P-HGu773WOnO1y34g-ZM_8aqh1j1MKFPscofwChsKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A DNN based trajectory optimization method for intercepting non-cooperative maneuvering spacecraft</title><source>IEEE Power & Energy Library</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yang, Fuyunxiang ; Yang, Leping ; Zhu, Yanwei ; Zeng, Xin</creator><creatorcontrib>Yang, Fuyunxiang ; Yang, Leping ; Zhu, Yanwei ; Zeng, Xin</creatorcontrib><description>Current successes in artificial intelligence domain have revitalized interest in neural networks and demonstrated their potential in solving spacecraft trajectory optimization prob-lems. This paper presents a data-free deep neural network (DNN) based trajectory optimization method for intercepting non-cooperative maneuvering spacecraft, in a continuous low-thrust scenario. Firstly, the problem is formulated as a standard con-strained optimization problem through differential game theory and minimax principle. Secondly, a new DNN is designed to in-tegrate interception dynamic model into the network and involve it in the process of gradient descent, which makes the network endowed with the knowledge of physical constraints and re-duces the learning burden of the network. Thus, a DNN based method is proposed, which completely eliminates the demand of training datasets and improves the generalization capacity. Fi-nally, numerical results demonstrate the feasibility and efficiency of our proposed method.</description><identifier>ISSN: 1004-4132</identifier><identifier>EISSN: 1004-4132</identifier><identifier>DOI: 10.23919/JSEE.2022.000044</identifier><language>eng</language><publisher>College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China</publisher><ispartof>Journal of systems engineering and electronics, 2022-04, Vol.33 (2), p.438-446</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-3a36b91a43a203d92d86405597cbc55ebe6ae4de11f48cd62a86b7f02254a3503</citedby><cites>FETCH-LOGICAL-c325t-3a36b91a43a203d92d86405597cbc55ebe6ae4de11f48cd62a86b7f02254a3503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/xtgcydzjs-e/xtgcydzjs-e.jpg</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Yang, Fuyunxiang</creatorcontrib><creatorcontrib>Yang, Leping</creatorcontrib><creatorcontrib>Zhu, Yanwei</creatorcontrib><creatorcontrib>Zeng, Xin</creatorcontrib><title>A DNN based trajectory optimization method for intercepting non-cooperative maneuvering spacecraft</title><title>Journal of systems engineering and electronics</title><description>Current successes in artificial intelligence domain have revitalized interest in neural networks and demonstrated their potential in solving spacecraft trajectory optimization prob-lems. This paper presents a data-free deep neural network (DNN) based trajectory optimization method for intercepting non-cooperative maneuvering spacecraft, in a continuous low-thrust scenario. Firstly, the problem is formulated as a standard con-strained optimization problem through differential game theory and minimax principle. Secondly, a new DNN is designed to in-tegrate interception dynamic model into the network and involve it in the process of gradient descent, which makes the network endowed with the knowledge of physical constraints and re-duces the learning burden of the network. Thus, a DNN based method is proposed, which completely eliminates the demand of training datasets and improves the generalization capacity. Fi-nally, numerical results demonstrate the feasibility and efficiency of our proposed method.</description><issn>1004-4132</issn><issn>1004-4132</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EElXpB7DzB5DiV9JmWZXyUlUWwNqaOJOSiNiR4xbar8ehLJjNHememdFcQq45mwqZ8_z2-XW1mgomxJTFUuqMjHjURHEpzv_1l2TS983AsFmk2YgUC3q32dACeixp8NCgCc4fqOtC3dZHCLWztMXw4UpaOU9rG9AbjK7dUutsYpzr0Eduj7QFi7s9-sHrOzBoPFThilxU8Nnj5E_H5P1-9bZ8TNYvD0_LxToxUqQhkSCzIuegJAgmy1yU80yxNM1npjBpigVmgKpEzis1N2UmYJ4Vsyq-kSqQKZNjcnPa-wW2ArvVjdt5Gy_q77A1h_LY9BqHkJhgPI84P-HGu773WOnO1y34g-ZM_8aqh1j1MKFPscofwChsKQ</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Yang, Fuyunxiang</creator><creator>Yang, Leping</creator><creator>Zhu, Yanwei</creator><creator>Zeng, Xin</creator><general>College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20220401</creationdate><title>A DNN based trajectory optimization method for intercepting non-cooperative maneuvering spacecraft</title><author>Yang, Fuyunxiang ; Yang, Leping ; Zhu, Yanwei ; Zeng, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-3a36b91a43a203d92d86405597cbc55ebe6ae4de11f48cd62a86b7f02254a3503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Fuyunxiang</creatorcontrib><creatorcontrib>Yang, Leping</creatorcontrib><creatorcontrib>Zhu, Yanwei</creatorcontrib><creatorcontrib>Zeng, Xin</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of systems engineering and electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Fuyunxiang</au><au>Yang, Leping</au><au>Zhu, Yanwei</au><au>Zeng, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A DNN based trajectory optimization method for intercepting non-cooperative maneuvering spacecraft</atitle><jtitle>Journal of systems engineering and electronics</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>33</volume><issue>2</issue><spage>438</spage><epage>446</epage><pages>438-446</pages><issn>1004-4132</issn><eissn>1004-4132</eissn><abstract>Current successes in artificial intelligence domain have revitalized interest in neural networks and demonstrated their potential in solving spacecraft trajectory optimization prob-lems. This paper presents a data-free deep neural network (DNN) based trajectory optimization method for intercepting non-cooperative maneuvering spacecraft, in a continuous low-thrust scenario. Firstly, the problem is formulated as a standard con-strained optimization problem through differential game theory and minimax principle. Secondly, a new DNN is designed to in-tegrate interception dynamic model into the network and involve it in the process of gradient descent, which makes the network endowed with the knowledge of physical constraints and re-duces the learning burden of the network. Thus, a DNN based method is proposed, which completely eliminates the demand of training datasets and improves the generalization capacity. Fi-nally, numerical results demonstrate the feasibility and efficiency of our proposed method.</abstract><pub>College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China</pub><doi>10.23919/JSEE.2022.000044</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1004-4132 |
ispartof | Journal of systems engineering and electronics, 2022-04, Vol.33 (2), p.438-446 |
issn | 1004-4132 1004-4132 |
language | eng |
recordid | cdi_wanfang_journals_xtgcydzjs_e202202019 |
source | IEEE Power & Energy Library; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | A DNN based trajectory optimization method for intercepting non-cooperative maneuvering spacecraft |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T07%3A21%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20DNN%20based%20trajectory%20optimization%20method%20for%20intercepting%20non-cooperative%20maneuvering%20spacecraft&rft.jtitle=Journal%20of%20systems%20engineering%20and%20electronics&rft.au=Yang,%20Fuyunxiang&rft.date=2022-04-01&rft.volume=33&rft.issue=2&rft.spage=438&rft.epage=446&rft.pages=438-446&rft.issn=1004-4132&rft.eissn=1004-4132&rft_id=info:doi/10.23919/JSEE.2022.000044&rft_dat=%3Cwanfang_jour_cross%3Extgcydzjs_e202202019%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=xtgcydzjs_e202202019&rfr_iscdi=true |