A DNN based trajectory optimization method for intercepting non-cooperative maneuvering spacecraft

Current successes in artificial intelligence domain have revitalized interest in neural networks and demonstrated their potential in solving spacecraft trajectory optimization prob-lems. This paper presents a data-free deep neural network (DNN) based trajectory optimization method for intercepting n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of systems engineering and electronics 2022-04, Vol.33 (2), p.438-446
Hauptverfasser: Yang, Fuyunxiang, Yang, Leping, Zhu, Yanwei, Zeng, Xin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 446
container_issue 2
container_start_page 438
container_title Journal of systems engineering and electronics
container_volume 33
creator Yang, Fuyunxiang
Yang, Leping
Zhu, Yanwei
Zeng, Xin
description Current successes in artificial intelligence domain have revitalized interest in neural networks and demonstrated their potential in solving spacecraft trajectory optimization prob-lems. This paper presents a data-free deep neural network (DNN) based trajectory optimization method for intercepting non-cooperative maneuvering spacecraft, in a continuous low-thrust scenario. Firstly, the problem is formulated as a standard con-strained optimization problem through differential game theory and minimax principle. Secondly, a new DNN is designed to in-tegrate interception dynamic model into the network and involve it in the process of gradient descent, which makes the network endowed with the knowledge of physical constraints and re-duces the learning burden of the network. Thus, a DNN based method is proposed, which completely eliminates the demand of training datasets and improves the generalization capacity. Fi-nally, numerical results demonstrate the feasibility and efficiency of our proposed method.
doi_str_mv 10.23919/JSEE.2022.000044
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_xtgcydzjs_e202202019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>xtgcydzjs_e202202019</wanfj_id><sourcerecordid>xtgcydzjs_e202202019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-3a36b91a43a203d92d86405597cbc55ebe6ae4de11f48cd62a86b7f02254a3503</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EElXpB7DzB5DiV9JmWZXyUlUWwNqaOJOSiNiR4xbar8ehLJjNHememdFcQq45mwqZ8_z2-XW1mgomxJTFUuqMjHjURHEpzv_1l2TS983AsFmk2YgUC3q32dACeixp8NCgCc4fqOtC3dZHCLWztMXw4UpaOU9rG9AbjK7dUutsYpzr0Eduj7QFi7s9-sHrOzBoPFThilxU8Nnj5E_H5P1-9bZ8TNYvD0_LxToxUqQhkSCzIuegJAgmy1yU80yxNM1npjBpigVmgKpEzis1N2UmYJ4Vsyq-kSqQKZNjcnPa-wW2ArvVjdt5Gy_q77A1h_LY9BqHkJhgPI84P-HGu773WOnO1y34g-ZM_8aqh1j1MKFPscofwChsKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A DNN based trajectory optimization method for intercepting non-cooperative maneuvering spacecraft</title><source>IEEE Power &amp; Energy Library</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yang, Fuyunxiang ; Yang, Leping ; Zhu, Yanwei ; Zeng, Xin</creator><creatorcontrib>Yang, Fuyunxiang ; Yang, Leping ; Zhu, Yanwei ; Zeng, Xin</creatorcontrib><description>Current successes in artificial intelligence domain have revitalized interest in neural networks and demonstrated their potential in solving spacecraft trajectory optimization prob-lems. This paper presents a data-free deep neural network (DNN) based trajectory optimization method for intercepting non-cooperative maneuvering spacecraft, in a continuous low-thrust scenario. Firstly, the problem is formulated as a standard con-strained optimization problem through differential game theory and minimax principle. Secondly, a new DNN is designed to in-tegrate interception dynamic model into the network and involve it in the process of gradient descent, which makes the network endowed with the knowledge of physical constraints and re-duces the learning burden of the network. Thus, a DNN based method is proposed, which completely eliminates the demand of training datasets and improves the generalization capacity. Fi-nally, numerical results demonstrate the feasibility and efficiency of our proposed method.</description><identifier>ISSN: 1004-4132</identifier><identifier>EISSN: 1004-4132</identifier><identifier>DOI: 10.23919/JSEE.2022.000044</identifier><language>eng</language><publisher>College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China</publisher><ispartof>Journal of systems engineering and electronics, 2022-04, Vol.33 (2), p.438-446</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-3a36b91a43a203d92d86405597cbc55ebe6ae4de11f48cd62a86b7f02254a3503</citedby><cites>FETCH-LOGICAL-c325t-3a36b91a43a203d92d86405597cbc55ebe6ae4de11f48cd62a86b7f02254a3503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/xtgcydzjs-e/xtgcydzjs-e.jpg</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Yang, Fuyunxiang</creatorcontrib><creatorcontrib>Yang, Leping</creatorcontrib><creatorcontrib>Zhu, Yanwei</creatorcontrib><creatorcontrib>Zeng, Xin</creatorcontrib><title>A DNN based trajectory optimization method for intercepting non-cooperative maneuvering spacecraft</title><title>Journal of systems engineering and electronics</title><description>Current successes in artificial intelligence domain have revitalized interest in neural networks and demonstrated their potential in solving spacecraft trajectory optimization prob-lems. This paper presents a data-free deep neural network (DNN) based trajectory optimization method for intercepting non-cooperative maneuvering spacecraft, in a continuous low-thrust scenario. Firstly, the problem is formulated as a standard con-strained optimization problem through differential game theory and minimax principle. Secondly, a new DNN is designed to in-tegrate interception dynamic model into the network and involve it in the process of gradient descent, which makes the network endowed with the knowledge of physical constraints and re-duces the learning burden of the network. Thus, a DNN based method is proposed, which completely eliminates the demand of training datasets and improves the generalization capacity. Fi-nally, numerical results demonstrate the feasibility and efficiency of our proposed method.</description><issn>1004-4132</issn><issn>1004-4132</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EElXpB7DzB5DiV9JmWZXyUlUWwNqaOJOSiNiR4xbar8ehLJjNHememdFcQq45mwqZ8_z2-XW1mgomxJTFUuqMjHjURHEpzv_1l2TS983AsFmk2YgUC3q32dACeixp8NCgCc4fqOtC3dZHCLWztMXw4UpaOU9rG9AbjK7dUutsYpzr0Eduj7QFi7s9-sHrOzBoPFThilxU8Nnj5E_H5P1-9bZ8TNYvD0_LxToxUqQhkSCzIuegJAgmy1yU80yxNM1npjBpigVmgKpEzis1N2UmYJ4Vsyq-kSqQKZNjcnPa-wW2ArvVjdt5Gy_q77A1h_LY9BqHkJhgPI84P-HGu773WOnO1y34g-ZM_8aqh1j1MKFPscofwChsKQ</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Yang, Fuyunxiang</creator><creator>Yang, Leping</creator><creator>Zhu, Yanwei</creator><creator>Zeng, Xin</creator><general>College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20220401</creationdate><title>A DNN based trajectory optimization method for intercepting non-cooperative maneuvering spacecraft</title><author>Yang, Fuyunxiang ; Yang, Leping ; Zhu, Yanwei ; Zeng, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-3a36b91a43a203d92d86405597cbc55ebe6ae4de11f48cd62a86b7f02254a3503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Fuyunxiang</creatorcontrib><creatorcontrib>Yang, Leping</creatorcontrib><creatorcontrib>Zhu, Yanwei</creatorcontrib><creatorcontrib>Zeng, Xin</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of systems engineering and electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Fuyunxiang</au><au>Yang, Leping</au><au>Zhu, Yanwei</au><au>Zeng, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A DNN based trajectory optimization method for intercepting non-cooperative maneuvering spacecraft</atitle><jtitle>Journal of systems engineering and electronics</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>33</volume><issue>2</issue><spage>438</spage><epage>446</epage><pages>438-446</pages><issn>1004-4132</issn><eissn>1004-4132</eissn><abstract>Current successes in artificial intelligence domain have revitalized interest in neural networks and demonstrated their potential in solving spacecraft trajectory optimization prob-lems. This paper presents a data-free deep neural network (DNN) based trajectory optimization method for intercepting non-cooperative maneuvering spacecraft, in a continuous low-thrust scenario. Firstly, the problem is formulated as a standard con-strained optimization problem through differential game theory and minimax principle. Secondly, a new DNN is designed to in-tegrate interception dynamic model into the network and involve it in the process of gradient descent, which makes the network endowed with the knowledge of physical constraints and re-duces the learning burden of the network. Thus, a DNN based method is proposed, which completely eliminates the demand of training datasets and improves the generalization capacity. Fi-nally, numerical results demonstrate the feasibility and efficiency of our proposed method.</abstract><pub>College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China</pub><doi>10.23919/JSEE.2022.000044</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1004-4132
ispartof Journal of systems engineering and electronics, 2022-04, Vol.33 (2), p.438-446
issn 1004-4132
1004-4132
language eng
recordid cdi_wanfang_journals_xtgcydzjs_e202202019
source IEEE Power & Energy Library; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title A DNN based trajectory optimization method for intercepting non-cooperative maneuvering spacecraft
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T07%3A21%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20DNN%20based%20trajectory%20optimization%20method%20for%20intercepting%20non-cooperative%20maneuvering%20spacecraft&rft.jtitle=Journal%20of%20systems%20engineering%20and%20electronics&rft.au=Yang,%20Fuyunxiang&rft.date=2022-04-01&rft.volume=33&rft.issue=2&rft.spage=438&rft.epage=446&rft.pages=438-446&rft.issn=1004-4132&rft.eissn=1004-4132&rft_id=info:doi/10.23919/JSEE.2022.000044&rft_dat=%3Cwanfang_jour_cross%3Extgcydzjs_e202202019%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=xtgcydzjs_e202202019&rfr_iscdi=true