Antlion optimizer algorithm based on chaos search and its application
Aiming at the problems of premature convergence and easily fal ing into local optimums of the antlion optimization algo-rithm, a chaos antlion optimization algorithm based on the chaos search is proposed. Firstly, in the algorithm, the population is ini-tialized by using the tent chaotic mapping, an...
Gespeichert in:
Veröffentlicht in: | Journal of systems engineering and electronics 2019-04, Vol.30 (2), p.352-365 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 365 |
---|---|
container_issue | 2 |
container_start_page | 352 |
container_title | Journal of systems engineering and electronics |
container_volume | 30 |
creator | ZHANG Zhenxing YANG Rennong LI Huanyu FANG Yuhuan HUANG Zhenyu ZHANG Ying |
description | Aiming at the problems of premature convergence and easily fal ing into local optimums of the antlion optimization algo-rithm, a chaos antlion optimization algorithm based on the chaos search is proposed. Firstly, in the algorithm, the population is ini-tialized by using the tent chaotic mapping, and the self-adaptive dynamic adjustment of chaotic search scopes is proposed in order to improve the overal fitness and the optimization efficiency of the population. Then, the tournament strategy is used to select antlions. Final y, the logistic chaos operator is used to optimize the random walk of ants, which forms a global and local paral el search mode with the antlion's foraging behavior. The performance algorithm is tested through 13 complex high-dimensional bench-mark functions and three dimensional path planning problems. The experimental results of six complex high-dimensional benchmark functions show that the presented algorithm has a better conver-gence speed and precision than the standard antlion algorithm and other optimization algorithms, and is suitable for the optimization of complex high dimensional functions. The trajectory planning ex-perimental results show that compared with the antlion optimizer (ALO) algorithm, grey wolf optimizer (GWO), particle swarm op-timization (PSO) and artificial bee colony (ABC) algorithm, it has advantages in speed and accuracy to obtain a specific path, and it is of great value in actual problems. |
doi_str_mv | 10.21629/JSEE.2019.02.14 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_xtgcydzjs_e201902014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>xtgcydzjs_e201902014</wanfj_id><sourcerecordid>xtgcydzjs_e201902014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-d3cb424bb00c30dc7db6a7965218a501067db55139f51d324678bdd1fca73a703</originalsourceid><addsrcrecordid>eNotkE1PwzAMhnMAiWnszjE_gBbno-16nKbypUkcgHPkJm2XqWurJAi2X0_K8MGW7Pex5ZeQOwYpZzkvH17fqyrlwMoUeMrkFVkwAJlIJvgNWXl_gDkK4BwWpNoMobfjQMcp2KM9N45i343Ohv2R1ugbQ-NQ73H01Dfo9J7iYKgNnuI09VZjiPQtuW6x983qvy7J52P1sX1Odm9PL9vNLtF8DSExQteSy7oG0AKMLkydY1HmGWdrzIBBHjtZxkTZZswILvNiXRvDWo2FwALEktxf9n7j0OLQqcP45YZ4Uf2ETp_M-eBVM78OMckoh4tcu9F717RqcvaI7qQYqD-z1GyWmgkFXEXkF682XqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Antlion optimizer algorithm based on chaos search and its application</title><source>IEEE Power & Energy Library</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>ZHANG Zhenxing ; YANG Rennong ; LI Huanyu ; FANG Yuhuan ; HUANG Zhenyu ; ZHANG Ying</creator><creatorcontrib>ZHANG Zhenxing ; YANG Rennong ; LI Huanyu ; FANG Yuhuan ; HUANG Zhenyu ; ZHANG Ying</creatorcontrib><description>Aiming at the problems of premature convergence and easily fal ing into local optimums of the antlion optimization algo-rithm, a chaos antlion optimization algorithm based on the chaos search is proposed. Firstly, in the algorithm, the population is ini-tialized by using the tent chaotic mapping, and the self-adaptive dynamic adjustment of chaotic search scopes is proposed in order to improve the overal fitness and the optimization efficiency of the population. Then, the tournament strategy is used to select antlions. Final y, the logistic chaos operator is used to optimize the random walk of ants, which forms a global and local paral el search mode with the antlion's foraging behavior. The performance algorithm is tested through 13 complex high-dimensional bench-mark functions and three dimensional path planning problems. The experimental results of six complex high-dimensional benchmark functions show that the presented algorithm has a better conver-gence speed and precision than the standard antlion algorithm and other optimization algorithms, and is suitable for the optimization of complex high dimensional functions. The trajectory planning ex-perimental results show that compared with the antlion optimizer (ALO) algorithm, grey wolf optimizer (GWO), particle swarm op-timization (PSO) and artificial bee colony (ABC) algorithm, it has advantages in speed and accuracy to obtain a specific path, and it is of great value in actual problems.</description><identifier>ISSN: 1004-4132</identifier><identifier>DOI: 10.21629/JSEE.2019.02.14</identifier><language>eng</language><publisher>Air Traffic Control and Navigation College, Air Force Engineering University, Xi'an 710038, China%Unit 95939 of PLA, Cangzhou 061736, China</publisher><ispartof>Journal of systems engineering and electronics, 2019-04, Vol.30 (2), p.352-365</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-d3cb424bb00c30dc7db6a7965218a501067db55139f51d324678bdd1fca73a703</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/xtgcydzjs-e/xtgcydzjs-e.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>ZHANG Zhenxing</creatorcontrib><creatorcontrib>YANG Rennong</creatorcontrib><creatorcontrib>LI Huanyu</creatorcontrib><creatorcontrib>FANG Yuhuan</creatorcontrib><creatorcontrib>HUANG Zhenyu</creatorcontrib><creatorcontrib>ZHANG Ying</creatorcontrib><title>Antlion optimizer algorithm based on chaos search and its application</title><title>Journal of systems engineering and electronics</title><description>Aiming at the problems of premature convergence and easily fal ing into local optimums of the antlion optimization algo-rithm, a chaos antlion optimization algorithm based on the chaos search is proposed. Firstly, in the algorithm, the population is ini-tialized by using the tent chaotic mapping, and the self-adaptive dynamic adjustment of chaotic search scopes is proposed in order to improve the overal fitness and the optimization efficiency of the population. Then, the tournament strategy is used to select antlions. Final y, the logistic chaos operator is used to optimize the random walk of ants, which forms a global and local paral el search mode with the antlion's foraging behavior. The performance algorithm is tested through 13 complex high-dimensional bench-mark functions and three dimensional path planning problems. The experimental results of six complex high-dimensional benchmark functions show that the presented algorithm has a better conver-gence speed and precision than the standard antlion algorithm and other optimization algorithms, and is suitable for the optimization of complex high dimensional functions. The trajectory planning ex-perimental results show that compared with the antlion optimizer (ALO) algorithm, grey wolf optimizer (GWO), particle swarm op-timization (PSO) and artificial bee colony (ABC) algorithm, it has advantages in speed and accuracy to obtain a specific path, and it is of great value in actual problems.</description><issn>1004-4132</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkE1PwzAMhnMAiWnszjE_gBbno-16nKbypUkcgHPkJm2XqWurJAi2X0_K8MGW7Pex5ZeQOwYpZzkvH17fqyrlwMoUeMrkFVkwAJlIJvgNWXl_gDkK4BwWpNoMobfjQMcp2KM9N45i343Ohv2R1ugbQ-NQ73H01Dfo9J7iYKgNnuI09VZjiPQtuW6x983qvy7J52P1sX1Odm9PL9vNLtF8DSExQteSy7oG0AKMLkydY1HmGWdrzIBBHjtZxkTZZswILvNiXRvDWo2FwALEktxf9n7j0OLQqcP45YZ4Uf2ETp_M-eBVM78OMckoh4tcu9F717RqcvaI7qQYqD-z1GyWmgkFXEXkF682XqQ</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>ZHANG Zhenxing</creator><creator>YANG Rennong</creator><creator>LI Huanyu</creator><creator>FANG Yuhuan</creator><creator>HUANG Zhenyu</creator><creator>ZHANG Ying</creator><general>Air Traffic Control and Navigation College, Air Force Engineering University, Xi'an 710038, China%Unit 95939 of PLA, Cangzhou 061736, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20190401</creationdate><title>Antlion optimizer algorithm based on chaos search and its application</title><author>ZHANG Zhenxing ; YANG Rennong ; LI Huanyu ; FANG Yuhuan ; HUANG Zhenyu ; ZHANG Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-d3cb424bb00c30dc7db6a7965218a501067db55139f51d324678bdd1fca73a703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZHANG Zhenxing</creatorcontrib><creatorcontrib>YANG Rennong</creatorcontrib><creatorcontrib>LI Huanyu</creatorcontrib><creatorcontrib>FANG Yuhuan</creatorcontrib><creatorcontrib>HUANG Zhenyu</creatorcontrib><creatorcontrib>ZHANG Ying</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of systems engineering and electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZHANG Zhenxing</au><au>YANG Rennong</au><au>LI Huanyu</au><au>FANG Yuhuan</au><au>HUANG Zhenyu</au><au>ZHANG Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antlion optimizer algorithm based on chaos search and its application</atitle><jtitle>Journal of systems engineering and electronics</jtitle><date>2019-04-01</date><risdate>2019</risdate><volume>30</volume><issue>2</issue><spage>352</spage><epage>365</epage><pages>352-365</pages><issn>1004-4132</issn><abstract>Aiming at the problems of premature convergence and easily fal ing into local optimums of the antlion optimization algo-rithm, a chaos antlion optimization algorithm based on the chaos search is proposed. Firstly, in the algorithm, the population is ini-tialized by using the tent chaotic mapping, and the self-adaptive dynamic adjustment of chaotic search scopes is proposed in order to improve the overal fitness and the optimization efficiency of the population. Then, the tournament strategy is used to select antlions. Final y, the logistic chaos operator is used to optimize the random walk of ants, which forms a global and local paral el search mode with the antlion's foraging behavior. The performance algorithm is tested through 13 complex high-dimensional bench-mark functions and three dimensional path planning problems. The experimental results of six complex high-dimensional benchmark functions show that the presented algorithm has a better conver-gence speed and precision than the standard antlion algorithm and other optimization algorithms, and is suitable for the optimization of complex high dimensional functions. The trajectory planning ex-perimental results show that compared with the antlion optimizer (ALO) algorithm, grey wolf optimizer (GWO), particle swarm op-timization (PSO) and artificial bee colony (ABC) algorithm, it has advantages in speed and accuracy to obtain a specific path, and it is of great value in actual problems.</abstract><pub>Air Traffic Control and Navigation College, Air Force Engineering University, Xi'an 710038, China%Unit 95939 of PLA, Cangzhou 061736, China</pub><doi>10.21629/JSEE.2019.02.14</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1004-4132 |
ispartof | Journal of systems engineering and electronics, 2019-04, Vol.30 (2), p.352-365 |
issn | 1004-4132 |
language | eng |
recordid | cdi_wanfang_journals_xtgcydzjs_e201902014 |
source | IEEE Power & Energy Library; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Antlion optimizer algorithm based on chaos search and its application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A28%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antlion%20optimizer%20algorithm%20based%20on%20chaos%20search%20and%20its%20application&rft.jtitle=Journal%20of%20systems%20engineering%20and%20electronics&rft.au=ZHANG%20Zhenxing&rft.date=2019-04-01&rft.volume=30&rft.issue=2&rft.spage=352&rft.epage=365&rft.pages=352-365&rft.issn=1004-4132&rft_id=info:doi/10.21629/JSEE.2019.02.14&rft_dat=%3Cwanfang_jour_cross%3Extgcydzjs_e201902014%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=xtgcydzjs_e201902014&rfr_iscdi=true |