A method for coastal oil tank detection in polarimetric SAR images based on recognition of T-shaped harbor

To automatically detect oil tanks in polarimetric syn-thetic aperture radar (SAR) images, a coastal oil tank detection method is proposed based on recognition of T-shaped harbor. First of all, the T-shaped harbor is detected to locate the region of inter-est (ROI) of oil tanks. Then all suspicious t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of systems engineering and electronics 2018-06, Vol.29 (3), p.499-509
Hauptverfasser: LIU Chun, XIE Chunhua, YANG Jian, XIAO Yingying, BAO Junliang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 509
container_issue 3
container_start_page 499
container_title Journal of systems engineering and electronics
container_volume 29
creator LIU Chun
XIE Chunhua
YANG Jian
XIAO Yingying
BAO Junliang
description To automatically detect oil tanks in polarimetric syn-thetic aperture radar (SAR) images, a coastal oil tank detection method is proposed based on recognition of T-shaped harbor. First of all, the T-shaped harbor is detected to locate the region of inter-est (ROI) of oil tanks. Then all suspicious targets in the ROI are extracted by the segmentation of strong scattering targets and the classifier of H/α . The template targets are selected from the sus-picious targets by the combination of a proposed circular degree parameter and the similarity parameter (SP) of the polarimetric coherency matrix. Finally, oil tanks are detected according to the statistics of the similarity parameter between each suspicious tar-get and template targets in ROI. Polarimetric SAR data acquired by RADARSAT-2 over Berkeley and Singapore areas are used for testing. Experiment results show that most of the targets are correctly detected and the overall detection rate is close to 80%. The false rate is effectively reduced by the proposed algorithm compared with the method without T-shaped harbor recognition.
doi_str_mv 10.21629/JSEE.2018.03.07
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_xtgcydzjs_e201803007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>xtgcydzjs_e201803007</wanfj_id><sourcerecordid>xtgcydzjs_e201803007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-ba3f73f2dd0d5bb465799bdbdd6304f56e648bca96307bcad9f49569fc12bce83</originalsourceid><addsrcrecordid>eNotkElPwzAQhX0Aiar0ztE_gISxnaU5VlXZVAmJlrPlNQtpXNlBUH49TstcnkbzvRnNQ-iOQEpJQauH191mk1IgyxRYCuUVmhGALMkIozdoEUIHU5VAKcxQt8IHMzZOY-s8Vk6EUfTYtT0exfCJtRmNGls34HbAR9cL30bctwrvVu-4PYjaBCxFMBpHxhvl6qE9887ifRIacYyjRnjp_C26tqIPZvGvc_TxuNmvn5Pt29PLerVNFM3pmEjBbMks1Rp0LmVW5GVVSS21LhhkNi9MkS2lElVsy6i6slmVF5VVhEpllmyO7i97v8VgxVDzzn35IV7kP2OtTvq3C9xM-QCLMUQcLrjyLgRvLD_GJ4U_cQL8nCifEuWTgwPj0fIHbrBsrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A method for coastal oil tank detection in polarimetric SAR images based on recognition of T-shaped harbor</title><source>IEEE Power &amp; Energy Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>LIU Chun ; XIE Chunhua ; YANG Jian ; XIAO Yingying ; BAO Junliang</creator><creatorcontrib>LIU Chun ; XIE Chunhua ; YANG Jian ; XIAO Yingying ; BAO Junliang</creatorcontrib><description>To automatically detect oil tanks in polarimetric syn-thetic aperture radar (SAR) images, a coastal oil tank detection method is proposed based on recognition of T-shaped harbor. First of all, the T-shaped harbor is detected to locate the region of inter-est (ROI) of oil tanks. Then all suspicious targets in the ROI are extracted by the segmentation of strong scattering targets and the classifier of H/α . The template targets are selected from the sus-picious targets by the combination of a proposed circular degree parameter and the similarity parameter (SP) of the polarimetric coherency matrix. Finally, oil tanks are detected according to the statistics of the similarity parameter between each suspicious tar-get and template targets in ROI. Polarimetric SAR data acquired by RADARSAT-2 over Berkeley and Singapore areas are used for testing. Experiment results show that most of the targets are correctly detected and the overall detection rate is close to 80%. The false rate is effectively reduced by the proposed algorithm compared with the method without T-shaped harbor recognition.</description><identifier>ISSN: 1004-4132</identifier><identifier>DOI: 10.21629/JSEE.2018.03.07</identifier><language>eng</language><publisher>Department of Electronic Engineering, Tsinghua University, Beijing 100084, China%National Satellite Ocean Application Service, Beijing 100081, China%Department of Geography, University of California Los Angeles, Los Angeles CA 90024, United States</publisher><ispartof>Journal of systems engineering and electronics, 2018-06, Vol.29 (3), p.499-509</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c252t-ba3f73f2dd0d5bb465799bdbdd6304f56e648bca96307bcad9f49569fc12bce83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/xtgcydzjs-e/xtgcydzjs-e.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>LIU Chun</creatorcontrib><creatorcontrib>XIE Chunhua</creatorcontrib><creatorcontrib>YANG Jian</creatorcontrib><creatorcontrib>XIAO Yingying</creatorcontrib><creatorcontrib>BAO Junliang</creatorcontrib><title>A method for coastal oil tank detection in polarimetric SAR images based on recognition of T-shaped harbor</title><title>Journal of systems engineering and electronics</title><description>To automatically detect oil tanks in polarimetric syn-thetic aperture radar (SAR) images, a coastal oil tank detection method is proposed based on recognition of T-shaped harbor. First of all, the T-shaped harbor is detected to locate the region of inter-est (ROI) of oil tanks. Then all suspicious targets in the ROI are extracted by the segmentation of strong scattering targets and the classifier of H/α . The template targets are selected from the sus-picious targets by the combination of a proposed circular degree parameter and the similarity parameter (SP) of the polarimetric coherency matrix. Finally, oil tanks are detected according to the statistics of the similarity parameter between each suspicious tar-get and template targets in ROI. Polarimetric SAR data acquired by RADARSAT-2 over Berkeley and Singapore areas are used for testing. Experiment results show that most of the targets are correctly detected and the overall detection rate is close to 80%. The false rate is effectively reduced by the proposed algorithm compared with the method without T-shaped harbor recognition.</description><issn>1004-4132</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotkElPwzAQhX0Aiar0ztE_gISxnaU5VlXZVAmJlrPlNQtpXNlBUH49TstcnkbzvRnNQ-iOQEpJQauH191mk1IgyxRYCuUVmhGALMkIozdoEUIHU5VAKcxQt8IHMzZOY-s8Vk6EUfTYtT0exfCJtRmNGls34HbAR9cL30bctwrvVu-4PYjaBCxFMBpHxhvl6qE9887ifRIacYyjRnjp_C26tqIPZvGvc_TxuNmvn5Pt29PLerVNFM3pmEjBbMks1Rp0LmVW5GVVSS21LhhkNi9MkS2lElVsy6i6slmVF5VVhEpllmyO7i97v8VgxVDzzn35IV7kP2OtTvq3C9xM-QCLMUQcLrjyLgRvLD_GJ4U_cQL8nCifEuWTgwPj0fIHbrBsrQ</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>LIU Chun</creator><creator>XIE Chunhua</creator><creator>YANG Jian</creator><creator>XIAO Yingying</creator><creator>BAO Junliang</creator><general>Department of Electronic Engineering, Tsinghua University, Beijing 100084, China%National Satellite Ocean Application Service, Beijing 100081, China%Department of Geography, University of California Los Angeles, Los Angeles CA 90024, United States</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20180601</creationdate><title>A method for coastal oil tank detection in polarimetric SAR images based on recognition of T-shaped harbor</title><author>LIU Chun ; XIE Chunhua ; YANG Jian ; XIAO Yingying ; BAO Junliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-ba3f73f2dd0d5bb465799bdbdd6304f56e648bca96307bcad9f49569fc12bce83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LIU Chun</creatorcontrib><creatorcontrib>XIE Chunhua</creatorcontrib><creatorcontrib>YANG Jian</creatorcontrib><creatorcontrib>XIAO Yingying</creatorcontrib><creatorcontrib>BAO Junliang</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of systems engineering and electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LIU Chun</au><au>XIE Chunhua</au><au>YANG Jian</au><au>XIAO Yingying</au><au>BAO Junliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A method for coastal oil tank detection in polarimetric SAR images based on recognition of T-shaped harbor</atitle><jtitle>Journal of systems engineering and electronics</jtitle><date>2018-06-01</date><risdate>2018</risdate><volume>29</volume><issue>3</issue><spage>499</spage><epage>509</epage><pages>499-509</pages><issn>1004-4132</issn><abstract>To automatically detect oil tanks in polarimetric syn-thetic aperture radar (SAR) images, a coastal oil tank detection method is proposed based on recognition of T-shaped harbor. First of all, the T-shaped harbor is detected to locate the region of inter-est (ROI) of oil tanks. Then all suspicious targets in the ROI are extracted by the segmentation of strong scattering targets and the classifier of H/α . The template targets are selected from the sus-picious targets by the combination of a proposed circular degree parameter and the similarity parameter (SP) of the polarimetric coherency matrix. Finally, oil tanks are detected according to the statistics of the similarity parameter between each suspicious tar-get and template targets in ROI. Polarimetric SAR data acquired by RADARSAT-2 over Berkeley and Singapore areas are used for testing. Experiment results show that most of the targets are correctly detected and the overall detection rate is close to 80%. The false rate is effectively reduced by the proposed algorithm compared with the method without T-shaped harbor recognition.</abstract><pub>Department of Electronic Engineering, Tsinghua University, Beijing 100084, China%National Satellite Ocean Application Service, Beijing 100081, China%Department of Geography, University of California Los Angeles, Los Angeles CA 90024, United States</pub><doi>10.21629/JSEE.2018.03.07</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1004-4132
ispartof Journal of systems engineering and electronics, 2018-06, Vol.29 (3), p.499-509
issn 1004-4132
language eng
recordid cdi_wanfang_journals_xtgcydzjs_e201803007
source IEEE Power & Energy Library; EZB-FREE-00999 freely available EZB journals
title A method for coastal oil tank detection in polarimetric SAR images based on recognition of T-shaped harbor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T08%3A21%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20method%20for%20coastal%20oil%20tank%20detection%20in%20polarimetric%20SAR%20images%20based%20on%20recognition%20of%20T-shaped%20harbor&rft.jtitle=Journal%20of%20systems%20engineering%20and%20electronics&rft.au=LIU%20Chun&rft.date=2018-06-01&rft.volume=29&rft.issue=3&rft.spage=499&rft.epage=509&rft.pages=499-509&rft.issn=1004-4132&rft_id=info:doi/10.21629/JSEE.2018.03.07&rft_dat=%3Cwanfang_jour_cross%3Extgcydzjs_e201803007%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=xtgcydzjs_e201803007&rfr_iscdi=true