Astronomical image restoration using variational Bayesian blind deconvolution
An algorithm is presented for image prior combinations based blind deconvolution and applied to astronomical images.Using a hierarchical Bayesian framework, the unknown original image and all required algorithmic parameters are estimated simultaneously.Through utilization of variational Bayesian ana...
Gespeichert in:
Veröffentlicht in: | Journal of systems engineering and electronics 2017-12, Vol.28 (6), p.1236-1247 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1247 |
---|---|
container_issue | 6 |
container_start_page | 1236 |
container_title | Journal of systems engineering and electronics |
container_volume | 28 |
creator | Xiaoping Shi Rui Guo Yi Zhu Zicai Wang |
description | An algorithm is presented for image prior combinations based blind deconvolution and applied to astronomical images.Using a hierarchical Bayesian framework, the unknown original image and all required algorithmic parameters are estimated simultaneously.Through utilization of variational Bayesian analysis,approximations of the posterior distributions on each unknown are obtained by minimizing the Kullback-Leibler (KL) distance, thus providing uncertainties of the estimates during the restoration process.Experimental results on both synthetic images and real astronomical images demonstrate that the proposed approaches compare favorably to other state-of-the-art reconstruction methods. |
doi_str_mv | 10.21629/JSEE.2017.06.21 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_xtgcydzjs_e201706021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>7000406487</cqvip_id><wanfj_id>xtgcydzjs_e201706021</wanfj_id><sourcerecordid>xtgcydzjs_e201706021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-572074922798bfa1ab6f9bdd7e2922517e852ab223a372ceff134b62c88a58063</originalsourceid><addsrcrecordid>eNo9kEFPwzAMhXMAiWnszrESVzocp03a45gGAw1xAM5R2qalU5dA0g3GryfdJnyxbL9n2R8hVxSmSDnmt0-vi8UUgYop8NA6IyMKkMQJZXhBJt6vYQgBiDAizzPfO2vspi1VF7Ub1ejIad9bp_rWmmjrW9NEO-XaQx00d2qvfatMVHStqaJKl9bsbLcdxpfkvFad15NTHpP3-8XbfBmvXh4e57NVXLIU-jgVCCLJEUWeFbWiquB1XlSV0BiaKRU6S1EViEwxgaWua8qSgmOZZSrNgLMxuTnu_VamVqaRa7t14Tgvf_qm3Fe_ay_1gAA4IA1yOMpLZ713upafLrzq9pKCPECTAzQ5OCRwebBcnywf1jRfAcK_RwR6CfAkE-wPdQ1t2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Astronomical image restoration using variational Bayesian blind deconvolution</title><source>IEEE Power & Energy Library</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Xiaoping Shi;Rui Guo;Yi Zhu;Zicai Wang</creator><creatorcontrib>Xiaoping Shi;Rui Guo;Yi Zhu;Zicai Wang</creatorcontrib><description>An algorithm is presented for image prior combinations based blind deconvolution and applied to astronomical images.Using a hierarchical Bayesian framework, the unknown original image and all required algorithmic parameters are estimated simultaneously.Through utilization of variational Bayesian analysis,approximations of the posterior distributions on each unknown are obtained by minimizing the Kullback-Leibler (KL) distance, thus providing uncertainties of the estimates during the restoration process.Experimental results on both synthetic images and real astronomical images demonstrate that the proposed approaches compare favorably to other state-of-the-art reconstruction methods.</description><identifier>ISSN: 1004-4132</identifier><identifier>DOI: 10.21629/JSEE.2017.06.21</identifier><language>eng</language><publisher>Control and Simulation Center, Harbin Institute of Technology, Harbin 150080, China</publisher><subject>astronomical ; Bayesian ; blind ; combination ; deconvolution ; processing ; variational</subject><ispartof>Journal of systems engineering and electronics, 2017-12, Vol.28 (6), p.1236-1247</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-572074922798bfa1ab6f9bdd7e2922517e852ab223a372ceff134b62c88a58063</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85918X/85918X.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Xiaoping Shi;Rui Guo;Yi Zhu;Zicai Wang</creatorcontrib><title>Astronomical image restoration using variational Bayesian blind deconvolution</title><title>Journal of systems engineering and electronics</title><addtitle>Journal of Systems Engineering and Electronics</addtitle><description>An algorithm is presented for image prior combinations based blind deconvolution and applied to astronomical images.Using a hierarchical Bayesian framework, the unknown original image and all required algorithmic parameters are estimated simultaneously.Through utilization of variational Bayesian analysis,approximations of the posterior distributions on each unknown are obtained by minimizing the Kullback-Leibler (KL) distance, thus providing uncertainties of the estimates during the restoration process.Experimental results on both synthetic images and real astronomical images demonstrate that the proposed approaches compare favorably to other state-of-the-art reconstruction methods.</description><subject>astronomical</subject><subject>Bayesian</subject><subject>blind</subject><subject>combination</subject><subject>deconvolution</subject><subject>processing</subject><subject>variational</subject><issn>1004-4132</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kEFPwzAMhXMAiWnszrESVzocp03a45gGAw1xAM5R2qalU5dA0g3GryfdJnyxbL9n2R8hVxSmSDnmt0-vi8UUgYop8NA6IyMKkMQJZXhBJt6vYQgBiDAizzPfO2vspi1VF7Ub1ejIad9bp_rWmmjrW9NEO-XaQx00d2qvfatMVHStqaJKl9bsbLcdxpfkvFad15NTHpP3-8XbfBmvXh4e57NVXLIU-jgVCCLJEUWeFbWiquB1XlSV0BiaKRU6S1EViEwxgaWua8qSgmOZZSrNgLMxuTnu_VamVqaRa7t14Tgvf_qm3Fe_ay_1gAA4IA1yOMpLZ713upafLrzq9pKCPECTAzQ5OCRwebBcnywf1jRfAcK_RwR6CfAkE-wPdQ1t2g</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Xiaoping Shi;Rui Guo;Yi Zhu;Zicai Wang</creator><general>Control and Simulation Center, Harbin Institute of Technology, Harbin 150080, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20171201</creationdate><title>Astronomical image restoration using variational Bayesian blind deconvolution</title><author>Xiaoping Shi;Rui Guo;Yi Zhu;Zicai Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-572074922798bfa1ab6f9bdd7e2922517e852ab223a372ceff134b62c88a58063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>astronomical</topic><topic>Bayesian</topic><topic>blind</topic><topic>combination</topic><topic>deconvolution</topic><topic>processing</topic><topic>variational</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiaoping Shi;Rui Guo;Yi Zhu;Zicai Wang</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of systems engineering and electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiaoping Shi;Rui Guo;Yi Zhu;Zicai Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Astronomical image restoration using variational Bayesian blind deconvolution</atitle><jtitle>Journal of systems engineering and electronics</jtitle><addtitle>Journal of Systems Engineering and Electronics</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>28</volume><issue>6</issue><spage>1236</spage><epage>1247</epage><pages>1236-1247</pages><issn>1004-4132</issn><abstract>An algorithm is presented for image prior combinations based blind deconvolution and applied to astronomical images.Using a hierarchical Bayesian framework, the unknown original image and all required algorithmic parameters are estimated simultaneously.Through utilization of variational Bayesian analysis,approximations of the posterior distributions on each unknown are obtained by minimizing the Kullback-Leibler (KL) distance, thus providing uncertainties of the estimates during the restoration process.Experimental results on both synthetic images and real astronomical images demonstrate that the proposed approaches compare favorably to other state-of-the-art reconstruction methods.</abstract><pub>Control and Simulation Center, Harbin Institute of Technology, Harbin 150080, China</pub><doi>10.21629/JSEE.2017.06.21</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1004-4132 |
ispartof | Journal of systems engineering and electronics, 2017-12, Vol.28 (6), p.1236-1247 |
issn | 1004-4132 |
language | eng |
recordid | cdi_wanfang_journals_xtgcydzjs_e201706021 |
source | IEEE Power & Energy Library; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | astronomical Bayesian blind combination deconvolution processing variational |
title | Astronomical image restoration using variational Bayesian blind deconvolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T05%3A49%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Astronomical%20image%20restoration%20using%20variational%20Bayesian%20blind%20deconvolution&rft.jtitle=Journal%20of%20systems%20engineering%20and%20electronics&rft.au=Xiaoping%20Shi;Rui%20Guo;Yi%20Zhu;Zicai%20Wang&rft.date=2017-12-01&rft.volume=28&rft.issue=6&rft.spage=1236&rft.epage=1247&rft.pages=1236-1247&rft.issn=1004-4132&rft_id=info:doi/10.21629/JSEE.2017.06.21&rft_dat=%3Cwanfang_jour_cross%3Extgcydzjs_e201706021%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=7000406487&rft_wanfj_id=xtgcydzjs_e201706021&rfr_iscdi=true |