Robust signal recognition algorithm based on machine learning in heterogeneous networks
There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio(SNR) circumstances or under time-varying multipath channels, the majority of the existing...
Gespeichert in:
Veröffentlicht in: | Journal of systems engineering and electronics 2016-04, Vol.27 (2), p.333-342 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 342 |
---|---|
container_issue | 2 |
container_start_page | 333 |
container_title | Journal of systems engineering and electronics |
container_volume | 27 |
creator | Liu, Xiaokai Li, Rong Zhao, Chenglin Wang, Pengbiao |
description | There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio(SNR) circumstances or under time-varying multipath channels, the majority of the existing algorithms for signal recognition are already facing limitations. In this series, we present a robust signal recognition method based upon the original and latest updated version of the extreme learning machine(ELM) to help users to switch between networks. The ELM utilizes signal characteristics to distinguish systems. The superiority of this algorithm lies in the random choices of hidden nodes and in the fact that it determines the output weights analytically, which result in lower complexity. Theoretically, the algorithm tends to offer a good generalization performance at an extremely fast speed of learning. Moreover, we implement the GSM/WCDMA/LTE models in the Matlab environment by using the Simulink tools. The simulations reveal that the signals can be recognized successfully to achieve a 95% accuracy in a low SNR(0 dB) environment in the time-varying multipath Rayleigh fading channel. |
doi_str_mv | 10.1109/JSEE.2016.00034 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_xtgcydzjs_e201602007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>668652662</cqvip_id><wanfj_id>xtgcydzjs_e201602007</wanfj_id><sourcerecordid>xtgcydzjs_e201602007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-bd57cb95317fdb32d1fb81beb6d72d35fca5297e64028405f6be62db8f47d3693</originalsourceid><addsrcrecordid>eNpNkMtLw0AQxoMoWLRnr4snD7bdR7JJjlLqi4LgA4_LbnaSbk13292EWv96k7aIc5lh-L6PmV8UXRE8JgTnk-e32WxMMeFjjDGLT6IBwTgexYTR03_zeTQMYYn7SjGleBB9vjrVhgYFU1lZIw-Fq6xpjLNI1pXzplmskJIBNOpWK1ksjAVUg_TW2AoZixbQgHcVWHBtQBaarfNf4TI6K2UdYHjsF9HH_ex9-jiavzw8Te_mo4KxrBkpnaSFyhNG0lIrRjUpVUYUKK5TqllSFjKheQo8xjSLcVJyBZxqlZVxqhnP2UV0e8jdSltKW4mla333SRDfTVXs9M8yCOjBYNr93MlvDvK1d5sWQiNWJhRQ13J_viBZknSxecw66eQgLbwLwUMp1t6spN8JgkUPXfTQRZ8t9tA7x_XRsXC22nR8_iycZzyhnFP2C2CSgRI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855369943</pqid></control><display><type>article</type><title>Robust signal recognition algorithm based on machine learning in heterogeneous networks</title><source>IEEE Power & Energy Library</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Liu, Xiaokai ; Li, Rong ; Zhao, Chenglin ; Wang, Pengbiao</creator><creatorcontrib>Liu, Xiaokai ; Li, Rong ; Zhao, Chenglin ; Wang, Pengbiao</creatorcontrib><description>There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio(SNR) circumstances or under time-varying multipath channels, the majority of the existing algorithms for signal recognition are already facing limitations. In this series, we present a robust signal recognition method based upon the original and latest updated version of the extreme learning machine(ELM) to help users to switch between networks. The ELM utilizes signal characteristics to distinguish systems. The superiority of this algorithm lies in the random choices of hidden nodes and in the fact that it determines the output weights analytically, which result in lower complexity. Theoretically, the algorithm tends to offer a good generalization performance at an extremely fast speed of learning. Moreover, we implement the GSM/WCDMA/LTE models in the Matlab environment by using the Simulink tools. The simulations reveal that the signals can be recognized successfully to achieve a 95% accuracy in a low SNR(0 dB) environment in the time-varying multipath Rayleigh fading channel.</description><identifier>ISSN: 1004-4132</identifier><identifier>EISSN: 1004-4132</identifier><identifier>DOI: 10.1109/JSEE.2016.00034</identifier><language>eng</language><publisher>School of Telecommunication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China%Testing Center, The State Radio Monitoring Center, Beijing 100037, China</publisher><subject>Algorithms ; Channels ; Machine learning ; Matlab ; MATLAB环境 ; Networks ; Neural networks ; Recognition ; Simulink ; Switching theory ; 信号系统 ; 多径瑞利衰落信道 ; 异构网络 ; 机器学习 ; 识别算法 ; 鲁棒</subject><ispartof>Journal of systems engineering and electronics, 2016-04, Vol.27 (2), p.333-342</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-bd57cb95317fdb32d1fb81beb6d72d35fca5297e64028405f6be62db8f47d3693</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85918X/85918X.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, Xiaokai</creatorcontrib><creatorcontrib>Li, Rong</creatorcontrib><creatorcontrib>Zhao, Chenglin</creatorcontrib><creatorcontrib>Wang, Pengbiao</creatorcontrib><title>Robust signal recognition algorithm based on machine learning in heterogeneous networks</title><title>Journal of systems engineering and electronics</title><addtitle>Journal of Systems Engineering and Electronics</addtitle><description>There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio(SNR) circumstances or under time-varying multipath channels, the majority of the existing algorithms for signal recognition are already facing limitations. In this series, we present a robust signal recognition method based upon the original and latest updated version of the extreme learning machine(ELM) to help users to switch between networks. The ELM utilizes signal characteristics to distinguish systems. The superiority of this algorithm lies in the random choices of hidden nodes and in the fact that it determines the output weights analytically, which result in lower complexity. Theoretically, the algorithm tends to offer a good generalization performance at an extremely fast speed of learning. Moreover, we implement the GSM/WCDMA/LTE models in the Matlab environment by using the Simulink tools. The simulations reveal that the signals can be recognized successfully to achieve a 95% accuracy in a low SNR(0 dB) environment in the time-varying multipath Rayleigh fading channel.</description><subject>Algorithms</subject><subject>Channels</subject><subject>Machine learning</subject><subject>Matlab</subject><subject>MATLAB环境</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Recognition</subject><subject>Simulink</subject><subject>Switching theory</subject><subject>信号系统</subject><subject>多径瑞利衰落信道</subject><subject>异构网络</subject><subject>机器学习</subject><subject>识别算法</subject><subject>鲁棒</subject><issn>1004-4132</issn><issn>1004-4132</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpNkMtLw0AQxoMoWLRnr4snD7bdR7JJjlLqi4LgA4_LbnaSbk13292EWv96k7aIc5lh-L6PmV8UXRE8JgTnk-e32WxMMeFjjDGLT6IBwTgexYTR03_zeTQMYYn7SjGleBB9vjrVhgYFU1lZIw-Fq6xpjLNI1pXzplmskJIBNOpWK1ksjAVUg_TW2AoZixbQgHcVWHBtQBaarfNf4TI6K2UdYHjsF9HH_ex9-jiavzw8Te_mo4KxrBkpnaSFyhNG0lIrRjUpVUYUKK5TqllSFjKheQo8xjSLcVJyBZxqlZVxqhnP2UV0e8jdSltKW4mla333SRDfTVXs9M8yCOjBYNr93MlvDvK1d5sWQiNWJhRQ13J_viBZknSxecw66eQgLbwLwUMp1t6spN8JgkUPXfTQRZ8t9tA7x_XRsXC22nR8_iycZzyhnFP2C2CSgRI</recordid><startdate>20160420</startdate><enddate>20160420</enddate><creator>Liu, Xiaokai</creator><creator>Li, Rong</creator><creator>Zhao, Chenglin</creator><creator>Wang, Pengbiao</creator><general>School of Telecommunication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China%Testing Center, The State Radio Monitoring Center, Beijing 100037, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20160420</creationdate><title>Robust signal recognition algorithm based on machine learning in heterogeneous networks</title><author>Liu, Xiaokai ; Li, Rong ; Zhao, Chenglin ; Wang, Pengbiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-bd57cb95317fdb32d1fb81beb6d72d35fca5297e64028405f6be62db8f47d3693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Channels</topic><topic>Machine learning</topic><topic>Matlab</topic><topic>MATLAB环境</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Recognition</topic><topic>Simulink</topic><topic>Switching theory</topic><topic>信号系统</topic><topic>多径瑞利衰落信道</topic><topic>异构网络</topic><topic>机器学习</topic><topic>识别算法</topic><topic>鲁棒</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiaokai</creatorcontrib><creatorcontrib>Li, Rong</creatorcontrib><creatorcontrib>Zhao, Chenglin</creatorcontrib><creatorcontrib>Wang, Pengbiao</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of systems engineering and electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiaokai</au><au>Li, Rong</au><au>Zhao, Chenglin</au><au>Wang, Pengbiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust signal recognition algorithm based on machine learning in heterogeneous networks</atitle><jtitle>Journal of systems engineering and electronics</jtitle><addtitle>Journal of Systems Engineering and Electronics</addtitle><date>2016-04-20</date><risdate>2016</risdate><volume>27</volume><issue>2</issue><spage>333</spage><epage>342</epage><pages>333-342</pages><issn>1004-4132</issn><eissn>1004-4132</eissn><abstract>There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio(SNR) circumstances or under time-varying multipath channels, the majority of the existing algorithms for signal recognition are already facing limitations. In this series, we present a robust signal recognition method based upon the original and latest updated version of the extreme learning machine(ELM) to help users to switch between networks. The ELM utilizes signal characteristics to distinguish systems. The superiority of this algorithm lies in the random choices of hidden nodes and in the fact that it determines the output weights analytically, which result in lower complexity. Theoretically, the algorithm tends to offer a good generalization performance at an extremely fast speed of learning. Moreover, we implement the GSM/WCDMA/LTE models in the Matlab environment by using the Simulink tools. The simulations reveal that the signals can be recognized successfully to achieve a 95% accuracy in a low SNR(0 dB) environment in the time-varying multipath Rayleigh fading channel.</abstract><pub>School of Telecommunication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China%Testing Center, The State Radio Monitoring Center, Beijing 100037, China</pub><doi>10.1109/JSEE.2016.00034</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1004-4132 |
ispartof | Journal of systems engineering and electronics, 2016-04, Vol.27 (2), p.333-342 |
issn | 1004-4132 1004-4132 |
language | eng |
recordid | cdi_wanfang_journals_xtgcydzjs_e201602007 |
source | IEEE Power & Energy Library; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Channels Machine learning Matlab MATLAB环境 Networks Neural networks Recognition Simulink Switching theory 信号系统 多径瑞利衰落信道 异构网络 机器学习 识别算法 鲁棒 |
title | Robust signal recognition algorithm based on machine learning in heterogeneous networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A16%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20signal%20recognition%20algorithm%20based%20on%20machine%20learning%20in%20heterogeneous%20networks&rft.jtitle=Journal%20of%20systems%20engineering%20and%20electronics&rft.au=Liu,%20Xiaokai&rft.date=2016-04-20&rft.volume=27&rft.issue=2&rft.spage=333&rft.epage=342&rft.pages=333-342&rft.issn=1004-4132&rft.eissn=1004-4132&rft_id=info:doi/10.1109/JSEE.2016.00034&rft_dat=%3Cwanfang_jour_proqu%3Extgcydzjs_e201602007%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855369943&rft_id=info:pmid/&rft_cqvip_id=668652662&rft_wanfj_id=xtgcydzjs_e201602007&rfr_iscdi=true |