Hybrid optimization algorithm based on chaos, cloud and particle swarm optimization algorithm
As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid optimization algorithm based on the cat mapping,the cloud model and PSO is proposed.W...
Gespeichert in:
Veröffentlicht in: | Journal of systems engineering and electronics 2013-04, Vol.24 (2), p.324-334 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 334 |
---|---|
container_issue | 2 |
container_start_page | 324 |
container_title | Journal of systems engineering and electronics |
container_volume | 24 |
creator | Li, Mingwei Kang, Haigui Zhou, Pengfei |
description | As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid optimization algorithm based on the cat mapping,the cloud model and PSO is proposed.While the PSO algorithm evolves a certain of generations,this algorithm applies the cat mapping to implement global disturbance of the poorer individuals,and employs the cloud model to execute local search of the better individuals;accordingly,the obtained best individuals form a new swarm.For this new swarm,the evolution operation is maintained with the PSO algorithm,using the parameter of pop distr to balance the global and local search capacity of the algorithm,as well as,adopting the parameter of mix gen to control mixing times of the algorithm.The comparative analysis is carried out on the basis of 4 functions and other algorithms.It indicates that this algorithm shows faster convergent speed and better solving precision for solving functions particularly those high-dimensional multi-modal functions.Finally,the suggested values are proposed for parameters pop distr and mix gen applied to different dimension functions via the comparative analysis of parameters. |
doi_str_mv | 10.1109/JSEE.2013.00041 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_xtgcydzjs_e201302019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>45638117</cqvip_id><wanfj_id>xtgcydzjs_e201302019</wanfj_id><sourcerecordid>xtgcydzjs_e201302019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-db8c0b7d5c4ff324984910e3d31e0aa928fdfbbebd2db21d30da9ed6d622addb3</originalsourceid><addsrcrecordid>eNp1kE1PwkAQhhujiQQ5e11vHijsR6Ht0RAUDYkH9Wg2-9WypN0tu20Qfr1bwcSLc5iZZN53ZvJE0S2CE4RgPn15Wy4nGCIygRAm6CIaoFDjBBF8-ae_jkbeb2EfKcQYDqLP1YE7LYFtWl3rI2u1NYBVpXW63dSAM6_C0ACxYdaPgahsJwEzEjTMtVpUCvg9c_U__pvoqmCVV6NzHUYfj8v3xSpevz49Lx7WsSBp1saSZwLyVM5EUhQEJ3mW5AgqIglSkLEcZ4UsOFdcYskxkgRKlis5l3OMmZScDKPxae-emYKZkm5t50y4SL_aUhzkceup6vHAkPIgvz_JG2d3nfItrbUXqqqYUbbzFCUozTISQAbp9CQVznrvVEEbp2vmDhRB2qOnPXra76Y_6IPj7uzYWFPudPjm15LM5iRDKCXf-ICD9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1417883041</pqid></control><display><type>article</type><title>Hybrid optimization algorithm based on chaos, cloud and particle swarm optimization algorithm</title><source>IEEE Power & Energy Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Li, Mingwei ; Kang, Haigui ; Zhou, Pengfei</creator><creatorcontrib>Li, Mingwei ; Kang, Haigui ; Zhou, Pengfei</creatorcontrib><description>As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid optimization algorithm based on the cat mapping,the cloud model and PSO is proposed.While the PSO algorithm evolves a certain of generations,this algorithm applies the cat mapping to implement global disturbance of the poorer individuals,and employs the cloud model to execute local search of the better individuals;accordingly,the obtained best individuals form a new swarm.For this new swarm,the evolution operation is maintained with the PSO algorithm,using the parameter of pop distr to balance the global and local search capacity of the algorithm,as well as,adopting the parameter of mix gen to control mixing times of the algorithm.The comparative analysis is carried out on the basis of 4 functions and other algorithms.It indicates that this algorithm shows faster convergent speed and better solving precision for solving functions particularly those high-dimensional multi-modal functions.Finally,the suggested values are proposed for parameters pop distr and mix gen applied to different dimension functions via the comparative analysis of parameters.</description><identifier>ISSN: 1004-4132</identifier><identifier>EISSN: 1004-4132</identifier><identifier>DOI: 10.1109/JSEE.2013.00041</identifier><language>eng</language><publisher>Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China%Department of Information Management, Oriental Institute of Technology, Taipei 220, China</publisher><subject>Algorithms ; Clouds ; Electronics ; Evolution ; Mapping ; Mathematical models ; Optimization ; PSO算法 ; Searching ; 基础 ; 多模态函数 ; 局部搜索能力 ; 收敛速度 ; 混合优化算法 ; 粒子模型 ; 粒子群优化算法</subject><ispartof>Journal of systems engineering and electronics, 2013-04, Vol.24 (2), p.324-334</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-db8c0b7d5c4ff324984910e3d31e0aa928fdfbbebd2db21d30da9ed6d622addb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85918X/85918X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Mingwei</creatorcontrib><creatorcontrib>Kang, Haigui</creatorcontrib><creatorcontrib>Zhou, Pengfei</creatorcontrib><title>Hybrid optimization algorithm based on chaos, cloud and particle swarm optimization algorithm</title><title>Journal of systems engineering and electronics</title><addtitle>Journal of Systems Engineering and Electronics</addtitle><description>As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid optimization algorithm based on the cat mapping,the cloud model and PSO is proposed.While the PSO algorithm evolves a certain of generations,this algorithm applies the cat mapping to implement global disturbance of the poorer individuals,and employs the cloud model to execute local search of the better individuals;accordingly,the obtained best individuals form a new swarm.For this new swarm,the evolution operation is maintained with the PSO algorithm,using the parameter of pop distr to balance the global and local search capacity of the algorithm,as well as,adopting the parameter of mix gen to control mixing times of the algorithm.The comparative analysis is carried out on the basis of 4 functions and other algorithms.It indicates that this algorithm shows faster convergent speed and better solving precision for solving functions particularly those high-dimensional multi-modal functions.Finally,the suggested values are proposed for parameters pop distr and mix gen applied to different dimension functions via the comparative analysis of parameters.</description><subject>Algorithms</subject><subject>Clouds</subject><subject>Electronics</subject><subject>Evolution</subject><subject>Mapping</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>PSO算法</subject><subject>Searching</subject><subject>基础</subject><subject>多模态函数</subject><subject>局部搜索能力</subject><subject>收敛速度</subject><subject>混合优化算法</subject><subject>粒子模型</subject><subject>粒子群优化算法</subject><issn>1004-4132</issn><issn>1004-4132</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwkAQhhujiQQ5e11vHijsR6Ht0RAUDYkH9Wg2-9WypN0tu20Qfr1bwcSLc5iZZN53ZvJE0S2CE4RgPn15Wy4nGCIygRAm6CIaoFDjBBF8-ae_jkbeb2EfKcQYDqLP1YE7LYFtWl3rI2u1NYBVpXW63dSAM6_C0ACxYdaPgahsJwEzEjTMtVpUCvg9c_U__pvoqmCVV6NzHUYfj8v3xSpevz49Lx7WsSBp1saSZwLyVM5EUhQEJ3mW5AgqIglSkLEcZ4UsOFdcYskxkgRKlis5l3OMmZScDKPxae-emYKZkm5t50y4SL_aUhzkceup6vHAkPIgvz_JG2d3nfItrbUXqqqYUbbzFCUozTISQAbp9CQVznrvVEEbp2vmDhRB2qOnPXra76Y_6IPj7uzYWFPudPjm15LM5iRDKCXf-ICD9w</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Li, Mingwei</creator><creator>Kang, Haigui</creator><creator>Zhou, Pengfei</creator><general>Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China%Department of Information Management, Oriental Institute of Technology, Taipei 220, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20130401</creationdate><title>Hybrid optimization algorithm based on chaos, cloud and particle swarm optimization algorithm</title><author>Li, Mingwei ; Kang, Haigui ; Zhou, Pengfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-db8c0b7d5c4ff324984910e3d31e0aa928fdfbbebd2db21d30da9ed6d622addb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Clouds</topic><topic>Electronics</topic><topic>Evolution</topic><topic>Mapping</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>PSO算法</topic><topic>Searching</topic><topic>基础</topic><topic>多模态函数</topic><topic>局部搜索能力</topic><topic>收敛速度</topic><topic>混合优化算法</topic><topic>粒子模型</topic><topic>粒子群优化算法</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Mingwei</creatorcontrib><creatorcontrib>Kang, Haigui</creatorcontrib><creatorcontrib>Zhou, Pengfei</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of systems engineering and electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Mingwei</au><au>Kang, Haigui</au><au>Zhou, Pengfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid optimization algorithm based on chaos, cloud and particle swarm optimization algorithm</atitle><jtitle>Journal of systems engineering and electronics</jtitle><addtitle>Journal of Systems Engineering and Electronics</addtitle><date>2013-04-01</date><risdate>2013</risdate><volume>24</volume><issue>2</issue><spage>324</spage><epage>334</epage><pages>324-334</pages><issn>1004-4132</issn><eissn>1004-4132</eissn><abstract>As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid optimization algorithm based on the cat mapping,the cloud model and PSO is proposed.While the PSO algorithm evolves a certain of generations,this algorithm applies the cat mapping to implement global disturbance of the poorer individuals,and employs the cloud model to execute local search of the better individuals;accordingly,the obtained best individuals form a new swarm.For this new swarm,the evolution operation is maintained with the PSO algorithm,using the parameter of pop distr to balance the global and local search capacity of the algorithm,as well as,adopting the parameter of mix gen to control mixing times of the algorithm.The comparative analysis is carried out on the basis of 4 functions and other algorithms.It indicates that this algorithm shows faster convergent speed and better solving precision for solving functions particularly those high-dimensional multi-modal functions.Finally,the suggested values are proposed for parameters pop distr and mix gen applied to different dimension functions via the comparative analysis of parameters.</abstract><pub>Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China%Department of Information Management, Oriental Institute of Technology, Taipei 220, China</pub><doi>10.1109/JSEE.2013.00041</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1004-4132 |
ispartof | Journal of systems engineering and electronics, 2013-04, Vol.24 (2), p.324-334 |
issn | 1004-4132 1004-4132 |
language | eng |
recordid | cdi_wanfang_journals_xtgcydzjs_e201302019 |
source | IEEE Power & Energy Library; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Clouds Electronics Evolution Mapping Mathematical models Optimization PSO算法 Searching 基础 多模态函数 局部搜索能力 收敛速度 混合优化算法 粒子模型 粒子群优化算法 |
title | Hybrid optimization algorithm based on chaos, cloud and particle swarm optimization algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A07%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20optimization%20algorithm%20based%20on%20chaos,%20cloud%20and%20particle%20swarm%20optimization%20algorithm&rft.jtitle=Journal%20of%20systems%20engineering%20and%20electronics&rft.au=Li,%20Mingwei&rft.date=2013-04-01&rft.volume=24&rft.issue=2&rft.spage=324&rft.epage=334&rft.pages=324-334&rft.issn=1004-4132&rft.eissn=1004-4132&rft_id=info:doi/10.1109/JSEE.2013.00041&rft_dat=%3Cwanfang_jour_proqu%3Extgcydzjs_e201302019%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1417883041&rft_id=info:pmid/&rft_cqvip_id=45638117&rft_wanfj_id=xtgcydzjs_e201302019&rfr_iscdi=true |