Hybrid optimization algorithm based on chaos, cloud and particle swarm optimization algorithm

As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid optimization algorithm based on the cat mapping,the cloud model and PSO is proposed.W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of systems engineering and electronics 2013-04, Vol.24 (2), p.324-334
Hauptverfasser: Li, Mingwei, Kang, Haigui, Zhou, Pengfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 334
container_issue 2
container_start_page 324
container_title Journal of systems engineering and electronics
container_volume 24
creator Li, Mingwei
Kang, Haigui
Zhou, Pengfei
description As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid optimization algorithm based on the cat mapping,the cloud model and PSO is proposed.While the PSO algorithm evolves a certain of generations,this algorithm applies the cat mapping to implement global disturbance of the poorer individuals,and employs the cloud model to execute local search of the better individuals;accordingly,the obtained best individuals form a new swarm.For this new swarm,the evolution operation is maintained with the PSO algorithm,using the parameter of pop distr to balance the global and local search capacity of the algorithm,as well as,adopting the parameter of mix gen to control mixing times of the algorithm.The comparative analysis is carried out on the basis of 4 functions and other algorithms.It indicates that this algorithm shows faster convergent speed and better solving precision for solving functions particularly those high-dimensional multi-modal functions.Finally,the suggested values are proposed for parameters pop distr and mix gen applied to different dimension functions via the comparative analysis of parameters.
doi_str_mv 10.1109/JSEE.2013.00041
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_xtgcydzjs_e201302019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>45638117</cqvip_id><wanfj_id>xtgcydzjs_e201302019</wanfj_id><sourcerecordid>xtgcydzjs_e201302019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-db8c0b7d5c4ff324984910e3d31e0aa928fdfbbebd2db21d30da9ed6d622addb3</originalsourceid><addsrcrecordid>eNp1kE1PwkAQhhujiQQ5e11vHijsR6Ht0RAUDYkH9Wg2-9WypN0tu20Qfr1bwcSLc5iZZN53ZvJE0S2CE4RgPn15Wy4nGCIygRAm6CIaoFDjBBF8-ae_jkbeb2EfKcQYDqLP1YE7LYFtWl3rI2u1NYBVpXW63dSAM6_C0ACxYdaPgahsJwEzEjTMtVpUCvg9c_U__pvoqmCVV6NzHUYfj8v3xSpevz49Lx7WsSBp1saSZwLyVM5EUhQEJ3mW5AgqIglSkLEcZ4UsOFdcYskxkgRKlis5l3OMmZScDKPxae-emYKZkm5t50y4SL_aUhzkceup6vHAkPIgvz_JG2d3nfItrbUXqqqYUbbzFCUozTISQAbp9CQVznrvVEEbp2vmDhRB2qOnPXra76Y_6IPj7uzYWFPudPjm15LM5iRDKCXf-ICD9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1417883041</pqid></control><display><type>article</type><title>Hybrid optimization algorithm based on chaos, cloud and particle swarm optimization algorithm</title><source>IEEE Power &amp; Energy Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Li, Mingwei ; Kang, Haigui ; Zhou, Pengfei</creator><creatorcontrib>Li, Mingwei ; Kang, Haigui ; Zhou, Pengfei</creatorcontrib><description>As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid optimization algorithm based on the cat mapping,the cloud model and PSO is proposed.While the PSO algorithm evolves a certain of generations,this algorithm applies the cat mapping to implement global disturbance of the poorer individuals,and employs the cloud model to execute local search of the better individuals;accordingly,the obtained best individuals form a new swarm.For this new swarm,the evolution operation is maintained with the PSO algorithm,using the parameter of pop distr to balance the global and local search capacity of the algorithm,as well as,adopting the parameter of mix gen to control mixing times of the algorithm.The comparative analysis is carried out on the basis of 4 functions and other algorithms.It indicates that this algorithm shows faster convergent speed and better solving precision for solving functions particularly those high-dimensional multi-modal functions.Finally,the suggested values are proposed for parameters pop distr and mix gen applied to different dimension functions via the comparative analysis of parameters.</description><identifier>ISSN: 1004-4132</identifier><identifier>EISSN: 1004-4132</identifier><identifier>DOI: 10.1109/JSEE.2013.00041</identifier><language>eng</language><publisher>Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China%Department of Information Management, Oriental Institute of Technology, Taipei 220, China</publisher><subject>Algorithms ; Clouds ; Electronics ; Evolution ; Mapping ; Mathematical models ; Optimization ; PSO算法 ; Searching ; 基础 ; 多模态函数 ; 局部搜索能力 ; 收敛速度 ; 混合优化算法 ; 粒子模型 ; 粒子群优化算法</subject><ispartof>Journal of systems engineering and electronics, 2013-04, Vol.24 (2), p.324-334</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-db8c0b7d5c4ff324984910e3d31e0aa928fdfbbebd2db21d30da9ed6d622addb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85918X/85918X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Mingwei</creatorcontrib><creatorcontrib>Kang, Haigui</creatorcontrib><creatorcontrib>Zhou, Pengfei</creatorcontrib><title>Hybrid optimization algorithm based on chaos, cloud and particle swarm optimization algorithm</title><title>Journal of systems engineering and electronics</title><addtitle>Journal of Systems Engineering and Electronics</addtitle><description>As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid optimization algorithm based on the cat mapping,the cloud model and PSO is proposed.While the PSO algorithm evolves a certain of generations,this algorithm applies the cat mapping to implement global disturbance of the poorer individuals,and employs the cloud model to execute local search of the better individuals;accordingly,the obtained best individuals form a new swarm.For this new swarm,the evolution operation is maintained with the PSO algorithm,using the parameter of pop distr to balance the global and local search capacity of the algorithm,as well as,adopting the parameter of mix gen to control mixing times of the algorithm.The comparative analysis is carried out on the basis of 4 functions and other algorithms.It indicates that this algorithm shows faster convergent speed and better solving precision for solving functions particularly those high-dimensional multi-modal functions.Finally,the suggested values are proposed for parameters pop distr and mix gen applied to different dimension functions via the comparative analysis of parameters.</description><subject>Algorithms</subject><subject>Clouds</subject><subject>Electronics</subject><subject>Evolution</subject><subject>Mapping</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>PSO算法</subject><subject>Searching</subject><subject>基础</subject><subject>多模态函数</subject><subject>局部搜索能力</subject><subject>收敛速度</subject><subject>混合优化算法</subject><subject>粒子模型</subject><subject>粒子群优化算法</subject><issn>1004-4132</issn><issn>1004-4132</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwkAQhhujiQQ5e11vHijsR6Ht0RAUDYkH9Wg2-9WypN0tu20Qfr1bwcSLc5iZZN53ZvJE0S2CE4RgPn15Wy4nGCIygRAm6CIaoFDjBBF8-ae_jkbeb2EfKcQYDqLP1YE7LYFtWl3rI2u1NYBVpXW63dSAM6_C0ACxYdaPgahsJwEzEjTMtVpUCvg9c_U__pvoqmCVV6NzHUYfj8v3xSpevz49Lx7WsSBp1saSZwLyVM5EUhQEJ3mW5AgqIglSkLEcZ4UsOFdcYskxkgRKlis5l3OMmZScDKPxae-emYKZkm5t50y4SL_aUhzkceup6vHAkPIgvz_JG2d3nfItrbUXqqqYUbbzFCUozTISQAbp9CQVznrvVEEbp2vmDhRB2qOnPXra76Y_6IPj7uzYWFPudPjm15LM5iRDKCXf-ICD9w</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Li, Mingwei</creator><creator>Kang, Haigui</creator><creator>Zhou, Pengfei</creator><general>Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China%Department of Information Management, Oriental Institute of Technology, Taipei 220, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20130401</creationdate><title>Hybrid optimization algorithm based on chaos, cloud and particle swarm optimization algorithm</title><author>Li, Mingwei ; Kang, Haigui ; Zhou, Pengfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-db8c0b7d5c4ff324984910e3d31e0aa928fdfbbebd2db21d30da9ed6d622addb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Clouds</topic><topic>Electronics</topic><topic>Evolution</topic><topic>Mapping</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>PSO算法</topic><topic>Searching</topic><topic>基础</topic><topic>多模态函数</topic><topic>局部搜索能力</topic><topic>收敛速度</topic><topic>混合优化算法</topic><topic>粒子模型</topic><topic>粒子群优化算法</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Mingwei</creatorcontrib><creatorcontrib>Kang, Haigui</creatorcontrib><creatorcontrib>Zhou, Pengfei</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of systems engineering and electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Mingwei</au><au>Kang, Haigui</au><au>Zhou, Pengfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid optimization algorithm based on chaos, cloud and particle swarm optimization algorithm</atitle><jtitle>Journal of systems engineering and electronics</jtitle><addtitle>Journal of Systems Engineering and Electronics</addtitle><date>2013-04-01</date><risdate>2013</risdate><volume>24</volume><issue>2</issue><spage>324</spage><epage>334</epage><pages>324-334</pages><issn>1004-4132</issn><eissn>1004-4132</eissn><abstract>As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid optimization algorithm based on the cat mapping,the cloud model and PSO is proposed.While the PSO algorithm evolves a certain of generations,this algorithm applies the cat mapping to implement global disturbance of the poorer individuals,and employs the cloud model to execute local search of the better individuals;accordingly,the obtained best individuals form a new swarm.For this new swarm,the evolution operation is maintained with the PSO algorithm,using the parameter of pop distr to balance the global and local search capacity of the algorithm,as well as,adopting the parameter of mix gen to control mixing times of the algorithm.The comparative analysis is carried out on the basis of 4 functions and other algorithms.It indicates that this algorithm shows faster convergent speed and better solving precision for solving functions particularly those high-dimensional multi-modal functions.Finally,the suggested values are proposed for parameters pop distr and mix gen applied to different dimension functions via the comparative analysis of parameters.</abstract><pub>Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China%Department of Information Management, Oriental Institute of Technology, Taipei 220, China</pub><doi>10.1109/JSEE.2013.00041</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1004-4132
ispartof Journal of systems engineering and electronics, 2013-04, Vol.24 (2), p.324-334
issn 1004-4132
1004-4132
language eng
recordid cdi_wanfang_journals_xtgcydzjs_e201302019
source IEEE Power & Energy Library; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Clouds
Electronics
Evolution
Mapping
Mathematical models
Optimization
PSO算法
Searching
基础
多模态函数
局部搜索能力
收敛速度
混合优化算法
粒子模型
粒子群优化算法
title Hybrid optimization algorithm based on chaos, cloud and particle swarm optimization algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A07%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20optimization%20algorithm%20based%20on%20chaos,%20cloud%20and%20particle%20swarm%20optimization%20algorithm&rft.jtitle=Journal%20of%20systems%20engineering%20and%20electronics&rft.au=Li,%20Mingwei&rft.date=2013-04-01&rft.volume=24&rft.issue=2&rft.spage=324&rft.epage=334&rft.pages=324-334&rft.issn=1004-4132&rft.eissn=1004-4132&rft_id=info:doi/10.1109/JSEE.2013.00041&rft_dat=%3Cwanfang_jour_proqu%3Extgcydzjs_e201302019%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1417883041&rft_id=info:pmid/&rft_cqvip_id=45638117&rft_wanfj_id=xtgcydzjs_e201302019&rfr_iscdi=true