Learning and fatigue inspired method for optimized HTN planning

Learning is widely used in intelligent planning to shorten the planning process or improve the plan quality. This paper aims at introducing learning and fatigue into the classical hierarchical task network (HTN) planning process so as to create better high- quality plans quickly. The process of HTN...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of systems engineering and electronics 2012-04, Vol.23 (2), p.233-241
Hauptverfasser: Zhang, Wanpeng, Shen, Lincheng, Chen, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 241
container_issue 2
container_start_page 233
container_title Journal of systems engineering and electronics
container_volume 23
creator Zhang, Wanpeng
Shen, Lincheng
Chen, Jing
description Learning is widely used in intelligent planning to shorten the planning process or improve the plan quality. This paper aims at introducing learning and fatigue into the classical hierarchical task network (HTN) planning process so as to create better high- quality plans quickly. The process of HTN planning is mapped during a depth-first search process in a problem-solving agent, and the models of learning in HTN planning is conducted similar to the learning depth-first search (LDFS). Based on the models, a learning method integrating HTN planning and LDFS is presented, and a fatigue mechanism is introduced to balance exploration and exploitation in learning. Finally, experiments in two classical do- mains are carried out in order to validate the effectiveness of the proposed learning and fatigue inspired method.
doi_str_mv 10.1109/JSEE.2012.00030
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_xtgcydzjs_e201202010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>41801334</cqvip_id><wanfj_id>xtgcydzjs_e201202010</wanfj_id><sourcerecordid>xtgcydzjs_e201202010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-69fa580885e298da72366d0a4e58d0750e40278d2550e9c9236aaa6268ac95103</originalsourceid><addsrcrecordid>eNpNkMFPwyAUh4nRxEV39lpvHuz2gNLSkzHLdJpFD84zIS3tWFbooI1uf73ULUYO8PL4fg_yIXSDYYIx5NPXj_l8QgCTCQBQOEMjDJDECabk_F99icbeb2BYGRACI_SwVNIZbepImjKqZKfrXkXa-FY7VUaN6tY29K2LbNvpRh9Cc7F6i9qtNEPsGl1UcuvV-HReoc-n-Wq2iJfvzy-zx2VckBx3cZpXknHgnCmS81JmhKZpCTJRjJeQMVAJkIyXhIUyL_JwLaVMScplkTMM9ArdH-d-SVNJU4uN7Z0JL4rvri725WHjhRoEQNgG_O6It87ueuU70WhfqG34tbK9FwHhFBjHLKDTI1o4671TlWidbqTbB0gMcsUgVwyzxa_ckLg9JdbW1Ltg4S-SYA6Y0oT-AJJxdRE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038305815</pqid></control><display><type>article</type><title>Learning and fatigue inspired method for optimized HTN planning</title><source>IEEE Power &amp; Energy Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhang, Wanpeng ; Shen, Lincheng ; Chen, Jing</creator><creatorcontrib>Zhang, Wanpeng ; Shen, Lincheng ; Chen, Jing</creatorcontrib><description>Learning is widely used in intelligent planning to shorten the planning process or improve the plan quality. This paper aims at introducing learning and fatigue into the classical hierarchical task network (HTN) planning process so as to create better high- quality plans quickly. The process of HTN planning is mapped during a depth-first search process in a problem-solving agent, and the models of learning in HTN planning is conducted similar to the learning depth-first search (LDFS). Based on the models, a learning method integrating HTN planning and LDFS is presented, and a fatigue mechanism is introduced to balance exploration and exploitation in learning. Finally, experiments in two classical do- mains are carried out in order to validate the effectiveness of the proposed learning and fatigue inspired method.</description><identifier>ISSN: 1004-4132</identifier><identifier>EISSN: 1004-4132</identifier><identifier>DOI: 10.1109/JSEE.2012.00030</identifier><language>eng</language><publisher>College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha 410073, P. R. China</publisher><subject>Electronics ; Exploration ; Fatigue (materials) ; Learning ; Mathematical models ; Networks ; Searching ; Tasks ; 优化 ; 学习方法 ; 搜索过程 ; 智能规划 ; 深度优先搜索 ; 灵感 ; 疲劳机制 ; 网络规划</subject><ispartof>Journal of systems engineering and electronics, 2012-04, Vol.23 (2), p.233-241</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85918X/85918X.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhang, Wanpeng</creatorcontrib><creatorcontrib>Shen, Lincheng</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><title>Learning and fatigue inspired method for optimized HTN planning</title><title>Journal of systems engineering and electronics</title><addtitle>Journal of Systems Engineering and Electronics</addtitle><description>Learning is widely used in intelligent planning to shorten the planning process or improve the plan quality. This paper aims at introducing learning and fatigue into the classical hierarchical task network (HTN) planning process so as to create better high- quality plans quickly. The process of HTN planning is mapped during a depth-first search process in a problem-solving agent, and the models of learning in HTN planning is conducted similar to the learning depth-first search (LDFS). Based on the models, a learning method integrating HTN planning and LDFS is presented, and a fatigue mechanism is introduced to balance exploration and exploitation in learning. Finally, experiments in two classical do- mains are carried out in order to validate the effectiveness of the proposed learning and fatigue inspired method.</description><subject>Electronics</subject><subject>Exploration</subject><subject>Fatigue (materials)</subject><subject>Learning</subject><subject>Mathematical models</subject><subject>Networks</subject><subject>Searching</subject><subject>Tasks</subject><subject>优化</subject><subject>学习方法</subject><subject>搜索过程</subject><subject>智能规划</subject><subject>深度优先搜索</subject><subject>灵感</subject><subject>疲劳机制</subject><subject>网络规划</subject><issn>1004-4132</issn><issn>1004-4132</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpNkMFPwyAUh4nRxEV39lpvHuz2gNLSkzHLdJpFD84zIS3tWFbooI1uf73ULUYO8PL4fg_yIXSDYYIx5NPXj_l8QgCTCQBQOEMjDJDECabk_F99icbeb2BYGRACI_SwVNIZbepImjKqZKfrXkXa-FY7VUaN6tY29K2LbNvpRh9Cc7F6i9qtNEPsGl1UcuvV-HReoc-n-Wq2iJfvzy-zx2VckBx3cZpXknHgnCmS81JmhKZpCTJRjJeQMVAJkIyXhIUyL_JwLaVMScplkTMM9ArdH-d-SVNJU4uN7Z0JL4rvri725WHjhRoEQNgG_O6It87ueuU70WhfqG34tbK9FwHhFBjHLKDTI1o4671TlWidbqTbB0gMcsUgVwyzxa_ckLg9JdbW1Ltg4S-SYA6Y0oT-AJJxdRE</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Zhang, Wanpeng</creator><creator>Shen, Lincheng</creator><creator>Chen, Jing</creator><general>College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha 410073, P. R. China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20120401</creationdate><title>Learning and fatigue inspired method for optimized HTN planning</title><author>Zhang, Wanpeng ; Shen, Lincheng ; Chen, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-69fa580885e298da72366d0a4e58d0750e40278d2550e9c9236aaa6268ac95103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Electronics</topic><topic>Exploration</topic><topic>Fatigue (materials)</topic><topic>Learning</topic><topic>Mathematical models</topic><topic>Networks</topic><topic>Searching</topic><topic>Tasks</topic><topic>优化</topic><topic>学习方法</topic><topic>搜索过程</topic><topic>智能规划</topic><topic>深度优先搜索</topic><topic>灵感</topic><topic>疲劳机制</topic><topic>网络规划</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wanpeng</creatorcontrib><creatorcontrib>Shen, Lincheng</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of systems engineering and electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Wanpeng</au><au>Shen, Lincheng</au><au>Chen, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning and fatigue inspired method for optimized HTN planning</atitle><jtitle>Journal of systems engineering and electronics</jtitle><addtitle>Journal of Systems Engineering and Electronics</addtitle><date>2012-04-01</date><risdate>2012</risdate><volume>23</volume><issue>2</issue><spage>233</spage><epage>241</epage><pages>233-241</pages><issn>1004-4132</issn><eissn>1004-4132</eissn><abstract>Learning is widely used in intelligent planning to shorten the planning process or improve the plan quality. This paper aims at introducing learning and fatigue into the classical hierarchical task network (HTN) planning process so as to create better high- quality plans quickly. The process of HTN planning is mapped during a depth-first search process in a problem-solving agent, and the models of learning in HTN planning is conducted similar to the learning depth-first search (LDFS). Based on the models, a learning method integrating HTN planning and LDFS is presented, and a fatigue mechanism is introduced to balance exploration and exploitation in learning. Finally, experiments in two classical do- mains are carried out in order to validate the effectiveness of the proposed learning and fatigue inspired method.</abstract><pub>College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha 410073, P. R. China</pub><doi>10.1109/JSEE.2012.00030</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1004-4132
ispartof Journal of systems engineering and electronics, 2012-04, Vol.23 (2), p.233-241
issn 1004-4132
1004-4132
language eng
recordid cdi_wanfang_journals_xtgcydzjs_e201202010
source IEEE Power & Energy Library; EZB-FREE-00999 freely available EZB journals
subjects Electronics
Exploration
Fatigue (materials)
Learning
Mathematical models
Networks
Searching
Tasks
优化
学习方法
搜索过程
智能规划
深度优先搜索
灵感
疲劳机制
网络规划
title Learning and fatigue inspired method for optimized HTN planning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A12%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20and%20fatigue%20inspired%20method%20for%20optimized%20HTN%20planning&rft.jtitle=Journal%20of%20systems%20engineering%20and%20electronics&rft.au=Zhang,%20Wanpeng&rft.date=2012-04-01&rft.volume=23&rft.issue=2&rft.spage=233&rft.epage=241&rft.pages=233-241&rft.issn=1004-4132&rft.eissn=1004-4132&rft_id=info:doi/10.1109/JSEE.2012.00030&rft_dat=%3Cwanfang_jour_proqu%3Extgcydzjs_e201202010%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038305815&rft_id=info:pmid/&rft_cqvip_id=41801334&rft_wanfj_id=xtgcydzjs_e201202010&rfr_iscdi=true