Research on Kalman-filter based multisensor data fusion
Multisensor data fusion has played a significant role in diverse areas ranging from local robot guidance to global military theatre defense etc. Various multisensor data fusion methods have been extensively investigated by researchers, of which Klaman filtering is one of the most important. Kalman f...
Gespeichert in:
Veröffentlicht in: | Journal of systems engineering and electronics 2007, Vol.18 (3), p.497-502 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 502 |
---|---|
container_issue | 3 |
container_start_page | 497 |
container_title | Journal of systems engineering and electronics |
container_volume | 18 |
creator | Yukun, Chen Xicai, Si Zhigang, Li |
description | Multisensor data fusion has played a significant role in diverse areas ranging from local robot guidance to global military theatre defense etc. Various multisensor data fusion methods have been extensively investigated by researchers, of which Klaman filtering is one of the most important. Kalman filtering is the best-known recursive least mean-square algorithm to optimally estimate the unknown states of a dynamic system, which has found widespread application in many areas. The scope of the work is restricted to investigate the various data fusion and track fusion techniques based on the Kalman Filter methods, then a new method of state fusion is proposed. Finally the simulation results demonstrate the effectiveness of the introduced method. |
doi_str_mv | 10.1016/S1004-4132(07)60119-4 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_xtgcydzjs_e200703010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>xtgcydzjs_e200703010</wanfj_id><els_id>S1004413207601194</els_id><sourcerecordid>xtgcydzjs_e200703010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-22e82a373e2d25ec2037fe1f1e4fdb8104087f915ed5957aaaf848a7d408ea323</originalsourceid><addsrcrecordid>eNqFkFtLw0AQhYMoWGp_gpAnUTC6l6SbPokUb1gQvDwv093ZuiXZrbuJWn-9SSvim_Myw_CdM8xJkkNKziih4_MnSkie5ZSzYyJOxoTSSZbvJIPf9e6feT8ZxbgkfQnCGBkk4hEjQlCvqXfpPVQ1uMzYqsGQziGiTuu2amxEF31INTSQmjZa7w6SPQNVxNFPHyYv11fP09ts9nBzN72cZYoL0WSMYcmAC45MswIVI1wYpIZibvS8pCQnpTATWqAuJoUAAFPmJQjd7RE448PkdOv7Ac6AW8ilb4PrLsrPZqHW-msZJbL-HU4o6fCjLb4K_q3F2MjaRoVVBQ59G2UHsXGHdmCxBVXwMQY0chVsDWEtKZF9sHITrOxTk0TITbAy73QXWx12T79bDDIqi06htgFVI7W3_zh8Aw35fjI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30126030</pqid></control><display><type>article</type><title>Research on Kalman-filter based multisensor data fusion</title><source>IEEE Power & Energy Library</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yukun, Chen ; Xicai, Si ; Zhigang, Li</creator><creatorcontrib>Yukun, Chen ; Xicai, Si ; Zhigang, Li</creatorcontrib><description>Multisensor data fusion has played a significant role in diverse areas ranging from local robot guidance to global military theatre defense etc. Various multisensor data fusion methods have been extensively investigated by researchers, of which Klaman filtering is one of the most important. Kalman filtering is the best-known recursive least mean-square algorithm to optimally estimate the unknown states of a dynamic system, which has found widespread application in many areas. The scope of the work is restricted to investigate the various data fusion and track fusion techniques based on the Kalman Filter methods, then a new method of state fusion is proposed. Finally the simulation results demonstrate the effectiveness of the introduced method.</description><identifier>ISSN: 1004-4132</identifier><identifier>EISSN: 1004-4132</identifier><identifier>DOI: 10.1016/S1004-4132(07)60119-4</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>data fusion ; Kalman filter ; multisensor</subject><ispartof>Journal of systems engineering and electronics, 2007, Vol.18 (3), p.497-502</ispartof><rights>2007 The Second Academy of China Aerospace Science & Industry Cooperation</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-22e82a373e2d25ec2037fe1f1e4fdb8104087f915ed5957aaaf848a7d408ea323</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/xtgcydzjs-e/xtgcydzjs-e.jpg</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Yukun, Chen</creatorcontrib><creatorcontrib>Xicai, Si</creatorcontrib><creatorcontrib>Zhigang, Li</creatorcontrib><title>Research on Kalman-filter based multisensor data fusion</title><title>Journal of systems engineering and electronics</title><description>Multisensor data fusion has played a significant role in diverse areas ranging from local robot guidance to global military theatre defense etc. Various multisensor data fusion methods have been extensively investigated by researchers, of which Klaman filtering is one of the most important. Kalman filtering is the best-known recursive least mean-square algorithm to optimally estimate the unknown states of a dynamic system, which has found widespread application in many areas. The scope of the work is restricted to investigate the various data fusion and track fusion techniques based on the Kalman Filter methods, then a new method of state fusion is proposed. Finally the simulation results demonstrate the effectiveness of the introduced method.</description><subject>data fusion</subject><subject>Kalman filter</subject><subject>multisensor</subject><issn>1004-4132</issn><issn>1004-4132</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLw0AQhYMoWGp_gpAnUTC6l6SbPokUb1gQvDwv093ZuiXZrbuJWn-9SSvim_Myw_CdM8xJkkNKziih4_MnSkie5ZSzYyJOxoTSSZbvJIPf9e6feT8ZxbgkfQnCGBkk4hEjQlCvqXfpPVQ1uMzYqsGQziGiTuu2amxEF31INTSQmjZa7w6SPQNVxNFPHyYv11fP09ts9nBzN72cZYoL0WSMYcmAC45MswIVI1wYpIZibvS8pCQnpTATWqAuJoUAAFPmJQjd7RE448PkdOv7Ac6AW8ilb4PrLsrPZqHW-msZJbL-HU4o6fCjLb4K_q3F2MjaRoVVBQ59G2UHsXGHdmCxBVXwMQY0chVsDWEtKZF9sHITrOxTk0TITbAy73QXWx12T79bDDIqi06htgFVI7W3_zh8Aw35fjI</recordid><startdate>2007</startdate><enddate>2007</enddate><creator>Yukun, Chen</creator><creator>Xicai, Si</creator><creator>Zhigang, Li</creator><general>Elsevier Ltd</general><general>Coll.of Information and Communications Engineering,Harbin Engineering Univ.,Harbin 150001,P.R.China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2007</creationdate><title>Research on Kalman-filter based multisensor data fusion</title><author>Yukun, Chen ; Xicai, Si ; Zhigang, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-22e82a373e2d25ec2037fe1f1e4fdb8104087f915ed5957aaaf848a7d408ea323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>data fusion</topic><topic>Kalman filter</topic><topic>multisensor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yukun, Chen</creatorcontrib><creatorcontrib>Xicai, Si</creatorcontrib><creatorcontrib>Zhigang, Li</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of systems engineering and electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yukun, Chen</au><au>Xicai, Si</au><au>Zhigang, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Kalman-filter based multisensor data fusion</atitle><jtitle>Journal of systems engineering and electronics</jtitle><date>2007</date><risdate>2007</risdate><volume>18</volume><issue>3</issue><spage>497</spage><epage>502</epage><pages>497-502</pages><issn>1004-4132</issn><eissn>1004-4132</eissn><abstract>Multisensor data fusion has played a significant role in diverse areas ranging from local robot guidance to global military theatre defense etc. Various multisensor data fusion methods have been extensively investigated by researchers, of which Klaman filtering is one of the most important. Kalman filtering is the best-known recursive least mean-square algorithm to optimally estimate the unknown states of a dynamic system, which has found widespread application in many areas. The scope of the work is restricted to investigate the various data fusion and track fusion techniques based on the Kalman Filter methods, then a new method of state fusion is proposed. Finally the simulation results demonstrate the effectiveness of the introduced method.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S1004-4132(07)60119-4</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1004-4132 |
ispartof | Journal of systems engineering and electronics, 2007, Vol.18 (3), p.497-502 |
issn | 1004-4132 1004-4132 |
language | eng |
recordid | cdi_wanfang_journals_xtgcydzjs_e200703010 |
source | IEEE Power & Energy Library; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | data fusion Kalman filter multisensor |
title | Research on Kalman-filter based multisensor data fusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A53%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Kalman-filter%20based%20multisensor%20data%20fusion&rft.jtitle=Journal%20of%20systems%20engineering%20and%20electronics&rft.au=Yukun,%20Chen&rft.date=2007&rft.volume=18&rft.issue=3&rft.spage=497&rft.epage=502&rft.pages=497-502&rft.issn=1004-4132&rft.eissn=1004-4132&rft_id=info:doi/10.1016/S1004-4132(07)60119-4&rft_dat=%3Cwanfang_jour_proqu%3Extgcydzjs_e200703010%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30126030&rft_id=info:pmid/&rft_wanfj_id=xtgcydzjs_e200703010&rft_els_id=S1004413207601194&rfr_iscdi=true |