Research on Kalman-filter based multisensor data fusion

Multisensor data fusion has played a significant role in diverse areas ranging from local robot guidance to global military theatre defense etc. Various multisensor data fusion methods have been extensively investigated by researchers, of which Klaman filtering is one of the most important. Kalman f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of systems engineering and electronics 2007, Vol.18 (3), p.497-502
Hauptverfasser: Yukun, Chen, Xicai, Si, Zhigang, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 502
container_issue 3
container_start_page 497
container_title Journal of systems engineering and electronics
container_volume 18
creator Yukun, Chen
Xicai, Si
Zhigang, Li
description Multisensor data fusion has played a significant role in diverse areas ranging from local robot guidance to global military theatre defense etc. Various multisensor data fusion methods have been extensively investigated by researchers, of which Klaman filtering is one of the most important. Kalman filtering is the best-known recursive least mean-square algorithm to optimally estimate the unknown states of a dynamic system, which has found widespread application in many areas. The scope of the work is restricted to investigate the various data fusion and track fusion techniques based on the Kalman Filter methods, then a new method of state fusion is proposed. Finally the simulation results demonstrate the effectiveness of the introduced method.
doi_str_mv 10.1016/S1004-4132(07)60119-4
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_xtgcydzjs_e200703010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>xtgcydzjs_e200703010</wanfj_id><els_id>S1004413207601194</els_id><sourcerecordid>xtgcydzjs_e200703010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-22e82a373e2d25ec2037fe1f1e4fdb8104087f915ed5957aaaf848a7d408ea323</originalsourceid><addsrcrecordid>eNqFkFtLw0AQhYMoWGp_gpAnUTC6l6SbPokUb1gQvDwv093ZuiXZrbuJWn-9SSvim_Myw_CdM8xJkkNKziih4_MnSkie5ZSzYyJOxoTSSZbvJIPf9e6feT8ZxbgkfQnCGBkk4hEjQlCvqXfpPVQ1uMzYqsGQziGiTuu2amxEF31INTSQmjZa7w6SPQNVxNFPHyYv11fP09ts9nBzN72cZYoL0WSMYcmAC45MswIVI1wYpIZibvS8pCQnpTATWqAuJoUAAFPmJQjd7RE448PkdOv7Ac6AW8ilb4PrLsrPZqHW-msZJbL-HU4o6fCjLb4K_q3F2MjaRoVVBQ59G2UHsXGHdmCxBVXwMQY0chVsDWEtKZF9sHITrOxTk0TITbAy73QXWx12T79bDDIqi06htgFVI7W3_zh8Aw35fjI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30126030</pqid></control><display><type>article</type><title>Research on Kalman-filter based multisensor data fusion</title><source>IEEE Power &amp; Energy Library</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yukun, Chen ; Xicai, Si ; Zhigang, Li</creator><creatorcontrib>Yukun, Chen ; Xicai, Si ; Zhigang, Li</creatorcontrib><description>Multisensor data fusion has played a significant role in diverse areas ranging from local robot guidance to global military theatre defense etc. Various multisensor data fusion methods have been extensively investigated by researchers, of which Klaman filtering is one of the most important. Kalman filtering is the best-known recursive least mean-square algorithm to optimally estimate the unknown states of a dynamic system, which has found widespread application in many areas. The scope of the work is restricted to investigate the various data fusion and track fusion techniques based on the Kalman Filter methods, then a new method of state fusion is proposed. Finally the simulation results demonstrate the effectiveness of the introduced method.</description><identifier>ISSN: 1004-4132</identifier><identifier>EISSN: 1004-4132</identifier><identifier>DOI: 10.1016/S1004-4132(07)60119-4</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>data fusion ; Kalman filter ; multisensor</subject><ispartof>Journal of systems engineering and electronics, 2007, Vol.18 (3), p.497-502</ispartof><rights>2007 The Second Academy of China Aerospace Science &amp; Industry Cooperation</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-22e82a373e2d25ec2037fe1f1e4fdb8104087f915ed5957aaaf848a7d408ea323</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/xtgcydzjs-e/xtgcydzjs-e.jpg</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Yukun, Chen</creatorcontrib><creatorcontrib>Xicai, Si</creatorcontrib><creatorcontrib>Zhigang, Li</creatorcontrib><title>Research on Kalman-filter based multisensor data fusion</title><title>Journal of systems engineering and electronics</title><description>Multisensor data fusion has played a significant role in diverse areas ranging from local robot guidance to global military theatre defense etc. Various multisensor data fusion methods have been extensively investigated by researchers, of which Klaman filtering is one of the most important. Kalman filtering is the best-known recursive least mean-square algorithm to optimally estimate the unknown states of a dynamic system, which has found widespread application in many areas. The scope of the work is restricted to investigate the various data fusion and track fusion techniques based on the Kalman Filter methods, then a new method of state fusion is proposed. Finally the simulation results demonstrate the effectiveness of the introduced method.</description><subject>data fusion</subject><subject>Kalman filter</subject><subject>multisensor</subject><issn>1004-4132</issn><issn>1004-4132</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLw0AQhYMoWGp_gpAnUTC6l6SbPokUb1gQvDwv093ZuiXZrbuJWn-9SSvim_Myw_CdM8xJkkNKziih4_MnSkie5ZSzYyJOxoTSSZbvJIPf9e6feT8ZxbgkfQnCGBkk4hEjQlCvqXfpPVQ1uMzYqsGQziGiTuu2amxEF31INTSQmjZa7w6SPQNVxNFPHyYv11fP09ts9nBzN72cZYoL0WSMYcmAC45MswIVI1wYpIZibvS8pCQnpTATWqAuJoUAAFPmJQjd7RE448PkdOv7Ac6AW8ilb4PrLsrPZqHW-msZJbL-HU4o6fCjLb4K_q3F2MjaRoVVBQ59G2UHsXGHdmCxBVXwMQY0chVsDWEtKZF9sHITrOxTk0TITbAy73QXWx12T79bDDIqi06htgFVI7W3_zh8Aw35fjI</recordid><startdate>2007</startdate><enddate>2007</enddate><creator>Yukun, Chen</creator><creator>Xicai, Si</creator><creator>Zhigang, Li</creator><general>Elsevier Ltd</general><general>Coll.of Information and Communications Engineering,Harbin Engineering Univ.,Harbin 150001,P.R.China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2007</creationdate><title>Research on Kalman-filter based multisensor data fusion</title><author>Yukun, Chen ; Xicai, Si ; Zhigang, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-22e82a373e2d25ec2037fe1f1e4fdb8104087f915ed5957aaaf848a7d408ea323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>data fusion</topic><topic>Kalman filter</topic><topic>multisensor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yukun, Chen</creatorcontrib><creatorcontrib>Xicai, Si</creatorcontrib><creatorcontrib>Zhigang, Li</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of systems engineering and electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yukun, Chen</au><au>Xicai, Si</au><au>Zhigang, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Kalman-filter based multisensor data fusion</atitle><jtitle>Journal of systems engineering and electronics</jtitle><date>2007</date><risdate>2007</risdate><volume>18</volume><issue>3</issue><spage>497</spage><epage>502</epage><pages>497-502</pages><issn>1004-4132</issn><eissn>1004-4132</eissn><abstract>Multisensor data fusion has played a significant role in diverse areas ranging from local robot guidance to global military theatre defense etc. Various multisensor data fusion methods have been extensively investigated by researchers, of which Klaman filtering is one of the most important. Kalman filtering is the best-known recursive least mean-square algorithm to optimally estimate the unknown states of a dynamic system, which has found widespread application in many areas. The scope of the work is restricted to investigate the various data fusion and track fusion techniques based on the Kalman Filter methods, then a new method of state fusion is proposed. Finally the simulation results demonstrate the effectiveness of the introduced method.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S1004-4132(07)60119-4</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1004-4132
ispartof Journal of systems engineering and electronics, 2007, Vol.18 (3), p.497-502
issn 1004-4132
1004-4132
language eng
recordid cdi_wanfang_journals_xtgcydzjs_e200703010
source IEEE Power & Energy Library; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects data fusion
Kalman filter
multisensor
title Research on Kalman-filter based multisensor data fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A53%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Kalman-filter%20based%20multisensor%20data%20fusion&rft.jtitle=Journal%20of%20systems%20engineering%20and%20electronics&rft.au=Yukun,%20Chen&rft.date=2007&rft.volume=18&rft.issue=3&rft.spage=497&rft.epage=502&rft.pages=497-502&rft.issn=1004-4132&rft.eissn=1004-4132&rft_id=info:doi/10.1016/S1004-4132(07)60119-4&rft_dat=%3Cwanfang_jour_proqu%3Extgcydzjs_e200703010%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30126030&rft_id=info:pmid/&rft_wanfj_id=xtgcydzjs_e200703010&rft_els_id=S1004413207601194&rfr_iscdi=true