Global Convergence Analysis of Non-Crossover Genetic Algorithm and Its Application to Optimization

Selection, crossover, and mutation are three main operators of the canonical genetic algorithm (CGA). This paper presents a new approach to the genetic algorithm. This new approach applies only to mutation and selection operators. The paper proves that the search process of the non-crossover genetic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of systems engineering and electronics 2002, Vol.13 (2), p.84-91
1. Verfasser: Dai Xiaoming Sun Rong Zou Runmin Xu Chao Shao Huihe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 91
container_issue 2
container_start_page 84
container_title Journal of systems engineering and electronics
container_volume 13
creator Dai Xiaoming Sun Rong Zou Runmin Xu Chao Shao Huihe
description Selection, crossover, and mutation are three main operators of the canonical genetic algorithm (CGA). This paper presents a new approach to the genetic algorithm. This new approach applies only to mutation and selection operators. The paper proves that the search process of the non-crossover genetic algorithm (NCGA) is an ergodic homogeneous Markov chain. The proof of its convergence to global optimum is presented. Some nonlinear multi-modal optimization problems are applied to test the efficacy of the NCGA. NP-hard traveling salesman problem (TSP) is cited here as the benchmark problem to test the efficiency of the algorithm. The simulation result shows that NCGA achieves much faster convergence speed than CGA in terms of CPU time. The convergence speed per epoch of NCGA is also faster than that of CGA.
format Article
fullrecord <record><control><sourceid>wanfang_jour_chong</sourceid><recordid>TN_cdi_wanfang_journals_xtgcydzjs_e200202014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>1001385369</cqvip_id><wanfj_id>xtgcydzjs_e200202014</wanfj_id><sourcerecordid>xtgcydzjs_e200202014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c664-c6bd1c2c97776bc6ce687deddf3144005c2bb77df7a67bfe390bb0ff057a2da13</originalsourceid><addsrcrecordid>eNotUMtOwzAQzAEkqtJ_8IEjkfxI7OYYRVAqVfTSe-Rn6uDaITaP9usxlF1pR6OZHWn3plggCKuyQgTfFasYR_hbDGIMF4XYuCC4A13wn3oetJcatJ67c7QRBANegy-7OcQYsgw22utkJWjdEGabjifAvQLbFEE7Tc5KnmzwIAWwn5I92csfvy9uDXdRr_5xWRyenw7dS7nbb7ZduyslpVUeQiGJZcMYo0JSqemaKa2UIaiqIKwlFoIxZRinTBhNGigENAbWjGPFEVkWj9fYL-4N90M_ho85XxL77zTIs7qMsdcYQpwbVdn-cLXLY_DDu80Lgss3Y53u878QWdeENuQHRbthfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Global Convergence Analysis of Non-Crossover Genetic Algorithm and Its Application to Optimization</title><source>IEEE Power &amp; Energy Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dai Xiaoming Sun Rong Zou Runmin Xu Chao Shao Huihe</creator><creatorcontrib>Dai Xiaoming Sun Rong Zou Runmin Xu Chao Shao Huihe</creatorcontrib><description>Selection, crossover, and mutation are three main operators of the canonical genetic algorithm (CGA). This paper presents a new approach to the genetic algorithm. This new approach applies only to mutation and selection operators. The paper proves that the search process of the non-crossover genetic algorithm (NCGA) is an ergodic homogeneous Markov chain. The proof of its convergence to global optimum is presented. Some nonlinear multi-modal optimization problems are applied to test the efficacy of the NCGA. NP-hard traveling salesman problem (TSP) is cited here as the benchmark problem to test the efficiency of the algorithm. The simulation result shows that NCGA achieves much faster convergence speed than CGA in terms of CPU time. The convergence speed per epoch of NCGA is also faster than that of CGA.</description><identifier>ISSN: 1004-4132</identifier><language>eng</language><publisher>Dept. of Auto., School of Electric and Information, Shanghai Jiaotong University, Shanghai 200030, P. R. China%College of Information Science and Enginereing, Central South University, Changsha 410083, P. R. China</publisher><subject>algorithm ; Canonical ; chain ; convergence ; Ergodic ; Genetic ; Global ; homogeneous ; Markov</subject><ispartof>Journal of systems engineering and electronics, 2002, Vol.13 (2), p.84-91</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85918X/85918X.jpg</thumbnail><link.rule.ids>314,777,781,4010</link.rule.ids></links><search><creatorcontrib>Dai Xiaoming Sun Rong Zou Runmin Xu Chao Shao Huihe</creatorcontrib><title>Global Convergence Analysis of Non-Crossover Genetic Algorithm and Its Application to Optimization</title><title>Journal of systems engineering and electronics</title><addtitle>Journal of Systems Engineering and Electronics</addtitle><description>Selection, crossover, and mutation are three main operators of the canonical genetic algorithm (CGA). This paper presents a new approach to the genetic algorithm. This new approach applies only to mutation and selection operators. The paper proves that the search process of the non-crossover genetic algorithm (NCGA) is an ergodic homogeneous Markov chain. The proof of its convergence to global optimum is presented. Some nonlinear multi-modal optimization problems are applied to test the efficacy of the NCGA. NP-hard traveling salesman problem (TSP) is cited here as the benchmark problem to test the efficiency of the algorithm. The simulation result shows that NCGA achieves much faster convergence speed than CGA in terms of CPU time. The convergence speed per epoch of NCGA is also faster than that of CGA.</description><subject>algorithm</subject><subject>Canonical</subject><subject>chain</subject><subject>convergence</subject><subject>Ergodic</subject><subject>Genetic</subject><subject>Global</subject><subject>homogeneous</subject><subject>Markov</subject><issn>1004-4132</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNotUMtOwzAQzAEkqtJ_8IEjkfxI7OYYRVAqVfTSe-Rn6uDaITaP9usxlF1pR6OZHWn3plggCKuyQgTfFasYR_hbDGIMF4XYuCC4A13wn3oetJcatJ67c7QRBANegy-7OcQYsgw22utkJWjdEGabjifAvQLbFEE7Tc5KnmzwIAWwn5I92csfvy9uDXdRr_5xWRyenw7dS7nbb7ZduyslpVUeQiGJZcMYo0JSqemaKa2UIaiqIKwlFoIxZRinTBhNGigENAbWjGPFEVkWj9fYL-4N90M_ho85XxL77zTIs7qMsdcYQpwbVdn-cLXLY_DDu80Lgss3Y53u878QWdeENuQHRbthfw</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Dai Xiaoming Sun Rong Zou Runmin Xu Chao Shao Huihe</creator><general>Dept. of Auto., School of Electric and Information, Shanghai Jiaotong University, Shanghai 200030, P. R. China%College of Information Science and Enginereing, Central South University, Changsha 410083, P. R. China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2002</creationdate><title>Global Convergence Analysis of Non-Crossover Genetic Algorithm and Its Application to Optimization</title><author>Dai Xiaoming Sun Rong Zou Runmin Xu Chao Shao Huihe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c664-c6bd1c2c97776bc6ce687deddf3144005c2bb77df7a67bfe390bb0ff057a2da13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>algorithm</topic><topic>Canonical</topic><topic>chain</topic><topic>convergence</topic><topic>Ergodic</topic><topic>Genetic</topic><topic>Global</topic><topic>homogeneous</topic><topic>Markov</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai Xiaoming Sun Rong Zou Runmin Xu Chao Shao Huihe</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of systems engineering and electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai Xiaoming Sun Rong Zou Runmin Xu Chao Shao Huihe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Convergence Analysis of Non-Crossover Genetic Algorithm and Its Application to Optimization</atitle><jtitle>Journal of systems engineering and electronics</jtitle><addtitle>Journal of Systems Engineering and Electronics</addtitle><date>2002</date><risdate>2002</risdate><volume>13</volume><issue>2</issue><spage>84</spage><epage>91</epage><pages>84-91</pages><issn>1004-4132</issn><abstract>Selection, crossover, and mutation are three main operators of the canonical genetic algorithm (CGA). This paper presents a new approach to the genetic algorithm. This new approach applies only to mutation and selection operators. The paper proves that the search process of the non-crossover genetic algorithm (NCGA) is an ergodic homogeneous Markov chain. The proof of its convergence to global optimum is presented. Some nonlinear multi-modal optimization problems are applied to test the efficacy of the NCGA. NP-hard traveling salesman problem (TSP) is cited here as the benchmark problem to test the efficiency of the algorithm. The simulation result shows that NCGA achieves much faster convergence speed than CGA in terms of CPU time. The convergence speed per epoch of NCGA is also faster than that of CGA.</abstract><pub>Dept. of Auto., School of Electric and Information, Shanghai Jiaotong University, Shanghai 200030, P. R. China%College of Information Science and Enginereing, Central South University, Changsha 410083, P. R. China</pub><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1004-4132
ispartof Journal of systems engineering and electronics, 2002, Vol.13 (2), p.84-91
issn 1004-4132
language eng
recordid cdi_wanfang_journals_xtgcydzjs_e200202014
source IEEE Power & Energy Library; EZB-FREE-00999 freely available EZB journals
subjects algorithm
Canonical
chain
convergence
Ergodic
Genetic
Global
homogeneous
Markov
title Global Convergence Analysis of Non-Crossover Genetic Algorithm and Its Application to Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A14%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Convergence%20Analysis%20of%20Non-Crossover%20Genetic%20Algorithm%20and%20Its%20Application%20to%20Optimization&rft.jtitle=Journal%20of%20systems%20engineering%20and%20electronics&rft.au=Dai%20Xiaoming%20Sun%20Rong%20Zou%20Runmin%20Xu%20Chao%20Shao%20Huihe&rft.date=2002&rft.volume=13&rft.issue=2&rft.spage=84&rft.epage=91&rft.pages=84-91&rft.issn=1004-4132&rft_id=info:doi/&rft_dat=%3Cwanfang_jour_chong%3Extgcydzjs_e200202014%3C/wanfang_jour_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=1001385369&rft_wanfj_id=xtgcydzjs_e200202014&rfr_iscdi=true