Weak Isomorphism of Finite Group

On the basis of the quasi-isomorphism of finite groups, a new mapping, weak isomorphism, from a finite group to another finite group is defined. Let G and H be two finite groups and G be weak-isomorphic to H. Then G≌H if G satisfies one of the following conditions. 1) G is a finite Abelian group. 2)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Southwest Jiaotong University 2007, Vol.15 (1), p.80-83
1. Verfasser: 蒲伟 何军华
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 83
container_issue 1
container_start_page 80
container_title Journal of Southwest Jiaotong University
container_volume 15
creator 蒲伟 何军华
description On the basis of the quasi-isomorphism of finite groups, a new mapping, weak isomorphism, from a finite group to another finite group is defined. Let G and H be two finite groups and G be weak-isomorphic to H. Then G≌H if G satisfies one of the following conditions. 1) G is a finite Abelian group. 2) The order of G is p^3. 3 ) The order of G is p^n+1 and G has a cyclic normal subgroup N = 〈a〉 of order p^n. 4) G is a nilpotent group and if p^││G│, then for any P ∈ Sylp (G), P has a cyclic maximal subgroup, where p is a prime; 5) G is a maximal class group of order p4(p〉3).
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_xnjtdxxb_e200701015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>23672720</cqvip_id><wanfj_id>xnjtdxxb_e200701015</wanfj_id><sourcerecordid>xnjtdxxb_e200701015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c945-67745b388a580b93f50e289491a7e42c42f94c082519d3f479d6bb09b5db16b23</originalsourceid><addsrcrecordid>eNotzU9LwzAcxvEeFJzT91A8eJHCL_-a5ijDzcHAy8BjSNJkS9cmXdNiX76VeXouH77PXbZCAKzAFIuH7DGlBoACoWKV5d9WXfJ9il0c-rNPXR5dvvXBjzbfDXHqn7J7p9pkn_93nR23H8fNZ3H42u0374fCCMqKknPKNKkqxSrQgjgGFleCCqS4pdhQ7AQ1UGGGRE0c5aIutQahWa1RqTFZZ2-37I8KToWTbOI0hOVQzqEZ63nW0mIADggQW_TrTfdDvE42jbLzydi2VcHGKUnyJwUnC3y5QXOO4XT1S1grc3G-tRKTkmOOgfwCOSBSpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30070973</pqid></control><display><type>article</type><title>Weak Isomorphism of Finite Group</title><source>Alma/SFX Local Collection</source><creator>蒲伟 何军华</creator><creatorcontrib>蒲伟 何军华</creatorcontrib><description>On the basis of the quasi-isomorphism of finite groups, a new mapping, weak isomorphism, from a finite group to another finite group is defined. Let G and H be two finite groups and G be weak-isomorphic to H. Then G≌H if G satisfies one of the following conditions. 1) G is a finite Abelian group. 2) The order of G is p^3. 3 ) The order of G is p^n+1 and G has a cyclic normal subgroup N = 〈a〉 of order p^n. 4) G is a nilpotent group and if p^││G│, then for any P ∈ Sylp (G), P has a cyclic maximal subgroup, where p is a prime; 5) G is a maximal class group of order p4(p〉3).</description><identifier>ISSN: 1005-2429</identifier><language>eng</language><publisher>Departmentof Application Mathematics, Southwest Jiaotong University, Chengdu 610031, China%Department of Mathematics, University of Electronic Science and Technology of China, Chengdu 610054, China</publisher><subject>幂零群 ; 有限群 ; 置换群</subject><ispartof>Journal of Southwest Jiaotong University, 2007, Vol.15 (1), p.80-83</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85396X/85396X.jpg</thumbnail><link.rule.ids>314,780,784,4022</link.rule.ids></links><search><creatorcontrib>蒲伟 何军华</creatorcontrib><title>Weak Isomorphism of Finite Group</title><title>Journal of Southwest Jiaotong University</title><addtitle>Journal of Southwest Jiaotong University</addtitle><description>On the basis of the quasi-isomorphism of finite groups, a new mapping, weak isomorphism, from a finite group to another finite group is defined. Let G and H be two finite groups and G be weak-isomorphic to H. Then G≌H if G satisfies one of the following conditions. 1) G is a finite Abelian group. 2) The order of G is p^3. 3 ) The order of G is p^n+1 and G has a cyclic normal subgroup N = 〈a〉 of order p^n. 4) G is a nilpotent group and if p^││G│, then for any P ∈ Sylp (G), P has a cyclic maximal subgroup, where p is a prime; 5) G is a maximal class group of order p4(p〉3).</description><subject>幂零群</subject><subject>有限群</subject><subject>置换群</subject><issn>1005-2429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNotzU9LwzAcxvEeFJzT91A8eJHCL_-a5ijDzcHAy8BjSNJkS9cmXdNiX76VeXouH77PXbZCAKzAFIuH7DGlBoACoWKV5d9WXfJ9il0c-rNPXR5dvvXBjzbfDXHqn7J7p9pkn_93nR23H8fNZ3H42u0374fCCMqKknPKNKkqxSrQgjgGFleCCqS4pdhQ7AQ1UGGGRE0c5aIutQahWa1RqTFZZ2-37I8KToWTbOI0hOVQzqEZ63nW0mIADggQW_TrTfdDvE42jbLzydi2VcHGKUnyJwUnC3y5QXOO4XT1S1grc3G-tRKTkmOOgfwCOSBSpA</recordid><startdate>2007</startdate><enddate>2007</enddate><creator>蒲伟 何军华</creator><general>Departmentof Application Mathematics, Southwest Jiaotong University, Chengdu 610031, China%Department of Mathematics, University of Electronic Science and Technology of China, Chengdu 610054, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2007</creationdate><title>Weak Isomorphism of Finite Group</title><author>蒲伟 何军华</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c945-67745b388a580b93f50e289491a7e42c42f94c082519d3f479d6bb09b5db16b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>幂零群</topic><topic>有限群</topic><topic>置换群</topic><toplevel>online_resources</toplevel><creatorcontrib>蒲伟 何军华</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of Southwest Jiaotong University</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>蒲伟 何军华</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak Isomorphism of Finite Group</atitle><jtitle>Journal of Southwest Jiaotong University</jtitle><addtitle>Journal of Southwest Jiaotong University</addtitle><date>2007</date><risdate>2007</risdate><volume>15</volume><issue>1</issue><spage>80</spage><epage>83</epage><pages>80-83</pages><issn>1005-2429</issn><abstract>On the basis of the quasi-isomorphism of finite groups, a new mapping, weak isomorphism, from a finite group to another finite group is defined. Let G and H be two finite groups and G be weak-isomorphic to H. Then G≌H if G satisfies one of the following conditions. 1) G is a finite Abelian group. 2) The order of G is p^3. 3 ) The order of G is p^n+1 and G has a cyclic normal subgroup N = 〈a〉 of order p^n. 4) G is a nilpotent group and if p^││G│, then for any P ∈ Sylp (G), P has a cyclic maximal subgroup, where p is a prime; 5) G is a maximal class group of order p4(p〉3).</abstract><pub>Departmentof Application Mathematics, Southwest Jiaotong University, Chengdu 610031, China%Department of Mathematics, University of Electronic Science and Technology of China, Chengdu 610054, China</pub><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1005-2429
ispartof Journal of Southwest Jiaotong University, 2007, Vol.15 (1), p.80-83
issn 1005-2429
language eng
recordid cdi_wanfang_journals_xnjtdxxb_e200701015
source Alma/SFX Local Collection
subjects 幂零群
有限群
置换群
title Weak Isomorphism of Finite Group
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A39%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20Isomorphism%20of%20Finite%20Group&rft.jtitle=Journal%20of%20Southwest%20Jiaotong%20University&rft.au=%E8%92%B2%E4%BC%9F%20%E4%BD%95%E5%86%9B%E5%8D%8E&rft.date=2007&rft.volume=15&rft.issue=1&rft.spage=80&rft.epage=83&rft.pages=80-83&rft.issn=1005-2429&rft_id=info:doi/&rft_dat=%3Cwanfang_jour_proqu%3Exnjtdxxb_e200701015%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30070973&rft_id=info:pmid/&rft_cqvip_id=23672720&rft_wanfj_id=xnjtdxxb_e200701015&rfr_iscdi=true