基于方根分解形式的UKF算法在目标跟踪中的应用
TN911.7%TP391.9; UKF作为一种新的非线性滤波方法已在目标跟踪问题中得到应用,在状态的时间更新阶段直接使用非线性模型,不引入线性化误差,而且不必计算Jacobians矩阵,相对于扩展卡尔曼滤波(EKF)不仅能提高滤波精度,而且更容易实现.提出了一种基于方根分解形式的UKF算法(SRD-UKF),算法的方根形式增加了数字稳定性和状态协方差的半正定性.通过BOT(bearing of target)仿真实验结果表明,该算法与UKF和PF算法相比具有更好的滤波性能....
Gespeichert in:
Veröffentlicht in: | 现代防御技术 2007, Vol.35 (5), p.120-129 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | TN911.7%TP391.9; UKF作为一种新的非线性滤波方法已在目标跟踪问题中得到应用,在状态的时间更新阶段直接使用非线性模型,不引入线性化误差,而且不必计算Jacobians矩阵,相对于扩展卡尔曼滤波(EKF)不仅能提高滤波精度,而且更容易实现.提出了一种基于方根分解形式的UKF算法(SRD-UKF),算法的方根形式增加了数字稳定性和状态协方差的半正定性.通过BOT(bearing of target)仿真实验结果表明,该算法与UKF和PF算法相比具有更好的滤波性能. |
---|---|
ISSN: | 1009-086X |
DOI: | 10.3969/j.issn.1009-086X.2007.05.027 |