基于方根分解形式的UKF算法在目标跟踪中的应用

TN911.7%TP391.9; UKF作为一种新的非线性滤波方法已在目标跟踪问题中得到应用,在状态的时间更新阶段直接使用非线性模型,不引入线性化误差,而且不必计算Jacobians矩阵,相对于扩展卡尔曼滤波(EKF)不仅能提高滤波精度,而且更容易实现.提出了一种基于方根分解形式的UKF算法(SRD-UKF),算法的方根形式增加了数字稳定性和状态协方差的半正定性.通过BOT(bearing of target)仿真实验结果表明,该算法与UKF和PF算法相比具有更好的滤波性能....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:现代防御技术 2007, Vol.35 (5), p.120-129
Hauptverfasser: 彭云辉, 杨小冈, 曹菲, 缪栋
Format: Artikel
Sprache:chi
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:TN911.7%TP391.9; UKF作为一种新的非线性滤波方法已在目标跟踪问题中得到应用,在状态的时间更新阶段直接使用非线性模型,不引入线性化误差,而且不必计算Jacobians矩阵,相对于扩展卡尔曼滤波(EKF)不仅能提高滤波精度,而且更容易实现.提出了一种基于方根分解形式的UKF算法(SRD-UKF),算法的方根形式增加了数字稳定性和状态协方差的半正定性.通过BOT(bearing of target)仿真实验结果表明,该算法与UKF和PF算法相比具有更好的滤波性能.
ISSN:1009-086X
DOI:10.3969/j.issn.1009-086X.2007.05.027