Pore-Scale Investigation of Coupled Two-Phase and Reactive Transport in the Cathode Electrode of Proton Exchange Membrane Fuel Cells
A three-dimensional multicomponent multiphase lattice Boltzmann model (LBM) is established to model the coupled two-phase and reactive transport phenomena in the cathode electrode of proton exchange membrane fuel cells. The gas diffusion layer (GDL) and microporous layer (MPL) are stochastically rec...
Gespeichert in:
Veröffentlicht in: | Transactions of Tianjin University 2023-02, Vol.29 (1), p.1-13 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Transactions of Tianjin University |
container_volume | 29 |
creator | Ye, Shengjie Hou, Yuze Li, Xing Jiao, Kui Du, Qing |
description | A three-dimensional multicomponent multiphase lattice Boltzmann model (LBM) is established to model the coupled two-phase and reactive transport phenomena in the cathode electrode of proton exchange membrane fuel cells. The gas diffusion layer (GDL) and microporous layer (MPL) are stochastically reconstructed with the inside dynamic distribution of oxygen and liquid water resolved, and the catalyst layer is simplified as a superthin layer to address the electrochemical reaction, which provides a clear description of the flooding effect on mass transport and performance. Different kinds of electrodes are reconstructed to determine the optimum porosity and structure design of the GDL and MPL by comparing the transport resistance and performance under the flooding condition. The simulation results show that gradient porosity GDL helps to increase the reactive area and average concentration under flooding. The presence of the MPL ensures the oxygen transport space and reaction area because liquid water cannot transport through micropores. Moreover, the MPL helps in the uniform distribution of oxygen for an efficient in-plane transport capacity. Crack and perforation structures can accelerate the water transport in the assembly. The systematic perforation design yields the best performance under flooding by separating the transport of liquid water and oxygen. |
doi_str_mv | 10.1007/s12209-021-00309-4 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_tianjdxxb_e202301001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>tianjdxxb_e202301001</wanfj_id><sourcerecordid>tianjdxxb_e202301001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-63fa4f665f18fac1579d2fbb29571f4c43c89a0987310f5f3bab12d44b39c0b43</originalsourceid><addsrcrecordid>eNp9kUtvFDEQhEeISITAH-BkiSsm7cc8fESjTYiUiBVZzpbH087OamIvtjdZ7vxwvAxSblzcffiq3Kqqqg8MPjOA9jIxzkFR4IwCiLLJV9U5U6qmHVPN67IDNFSqjr-p3qa0A5AKWnZe_V6HiPTemhnJjX_ClKcHk6fgSXCkD4f9jCPZPAe63pqExPiRfEdj8_SEZBONT_sQM5k8yVskvcnbMCJZzWhzPG3FZB1DLnaro90a_4DkDh-HIkRydcCZ9DjP6V115syc8P2_eVH9uFpt-q_09tv1Tf_llloJkGkjnJGuaWrHOmcsq1s1cjcMXNUtc9JKYTtlQHWtYOBqJwYzMD5KOQhlYZDiovq0-D4b78oxehcO0ZcfdZ6M343H46CRAxdQ4mIF_7jg-xh-Hko0Lzxv2waa8pwovlA2hpQiOr2P06OJvzQDfSpHL-XoUo7-W44-XSIWUSpwSSW-WP9H9QdPpJJJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2776067761</pqid></control><display><type>article</type><title>Pore-Scale Investigation of Coupled Two-Phase and Reactive Transport in the Cathode Electrode of Proton Exchange Membrane Fuel Cells</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ye, Shengjie ; Hou, Yuze ; Li, Xing ; Jiao, Kui ; Du, Qing</creator><creatorcontrib>Ye, Shengjie ; Hou, Yuze ; Li, Xing ; Jiao, Kui ; Du, Qing</creatorcontrib><description>A three-dimensional multicomponent multiphase lattice Boltzmann model (LBM) is established to model the coupled two-phase and reactive transport phenomena in the cathode electrode of proton exchange membrane fuel cells. The gas diffusion layer (GDL) and microporous layer (MPL) are stochastically reconstructed with the inside dynamic distribution of oxygen and liquid water resolved, and the catalyst layer is simplified as a superthin layer to address the electrochemical reaction, which provides a clear description of the flooding effect on mass transport and performance. Different kinds of electrodes are reconstructed to determine the optimum porosity and structure design of the GDL and MPL by comparing the transport resistance and performance under the flooding condition. The simulation results show that gradient porosity GDL helps to increase the reactive area and average concentration under flooding. The presence of the MPL ensures the oxygen transport space and reaction area because liquid water cannot transport through micropores. Moreover, the MPL helps in the uniform distribution of oxygen for an efficient in-plane transport capacity. Crack and perforation structures can accelerate the water transport in the assembly. The systematic perforation design yields the best performance under flooding by separating the transport of liquid water and oxygen.</description><identifier>ISSN: 1006-4982</identifier><identifier>EISSN: 1995-8196</identifier><identifier>DOI: 10.1007/s12209-021-00309-4</identifier><language>eng</language><publisher>Tianjin: Tianjin University</publisher><subject>Cathodes ; Concentration gradient ; Diffusion layers ; Electrodes ; Engineering ; Fuel cells ; Gaseous diffusion ; Humanities and Social Sciences ; Mass transport ; Mechanical Engineering ; multidisciplinary ; Oxygen ; Porosity ; Proton exchange membrane fuel cells ; Protons ; Research Article ; Science ; Transport phenomena ; Water</subject><ispartof>Transactions of Tianjin University, 2023-02, Vol.29 (1), p.1-13</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-63fa4f665f18fac1579d2fbb29571f4c43c89a0987310f5f3bab12d44b39c0b43</citedby><cites>FETCH-LOGICAL-c400t-63fa4f665f18fac1579d2fbb29571f4c43c89a0987310f5f3bab12d44b39c0b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/tianjdxxb-e/tianjdxxb-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12209-021-00309-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12209-021-00309-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Ye, Shengjie</creatorcontrib><creatorcontrib>Hou, Yuze</creatorcontrib><creatorcontrib>Li, Xing</creatorcontrib><creatorcontrib>Jiao, Kui</creatorcontrib><creatorcontrib>Du, Qing</creatorcontrib><title>Pore-Scale Investigation of Coupled Two-Phase and Reactive Transport in the Cathode Electrode of Proton Exchange Membrane Fuel Cells</title><title>Transactions of Tianjin University</title><addtitle>Trans. Tianjin Univ</addtitle><description>A three-dimensional multicomponent multiphase lattice Boltzmann model (LBM) is established to model the coupled two-phase and reactive transport phenomena in the cathode electrode of proton exchange membrane fuel cells. The gas diffusion layer (GDL) and microporous layer (MPL) are stochastically reconstructed with the inside dynamic distribution of oxygen and liquid water resolved, and the catalyst layer is simplified as a superthin layer to address the electrochemical reaction, which provides a clear description of the flooding effect on mass transport and performance. Different kinds of electrodes are reconstructed to determine the optimum porosity and structure design of the GDL and MPL by comparing the transport resistance and performance under the flooding condition. The simulation results show that gradient porosity GDL helps to increase the reactive area and average concentration under flooding. The presence of the MPL ensures the oxygen transport space and reaction area because liquid water cannot transport through micropores. Moreover, the MPL helps in the uniform distribution of oxygen for an efficient in-plane transport capacity. Crack and perforation structures can accelerate the water transport in the assembly. The systematic perforation design yields the best performance under flooding by separating the transport of liquid water and oxygen.</description><subject>Cathodes</subject><subject>Concentration gradient</subject><subject>Diffusion layers</subject><subject>Electrodes</subject><subject>Engineering</subject><subject>Fuel cells</subject><subject>Gaseous diffusion</subject><subject>Humanities and Social Sciences</subject><subject>Mass transport</subject><subject>Mechanical Engineering</subject><subject>multidisciplinary</subject><subject>Oxygen</subject><subject>Porosity</subject><subject>Proton exchange membrane fuel cells</subject><subject>Protons</subject><subject>Research Article</subject><subject>Science</subject><subject>Transport phenomena</subject><subject>Water</subject><issn>1006-4982</issn><issn>1995-8196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kUtvFDEQhEeISITAH-BkiSsm7cc8fESjTYiUiBVZzpbH087OamIvtjdZ7vxwvAxSblzcffiq3Kqqqg8MPjOA9jIxzkFR4IwCiLLJV9U5U6qmHVPN67IDNFSqjr-p3qa0A5AKWnZe_V6HiPTemhnJjX_ClKcHk6fgSXCkD4f9jCPZPAe63pqExPiRfEdj8_SEZBONT_sQM5k8yVskvcnbMCJZzWhzPG3FZB1DLnaro90a_4DkDh-HIkRydcCZ9DjP6V115syc8P2_eVH9uFpt-q_09tv1Tf_llloJkGkjnJGuaWrHOmcsq1s1cjcMXNUtc9JKYTtlQHWtYOBqJwYzMD5KOQhlYZDiovq0-D4b78oxehcO0ZcfdZ6M343H46CRAxdQ4mIF_7jg-xh-Hko0Lzxv2waa8pwovlA2hpQiOr2P06OJvzQDfSpHL-XoUo7-W44-XSIWUSpwSSW-WP9H9QdPpJJJ</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Ye, Shengjie</creator><creator>Hou, Yuze</creator><creator>Li, Xing</creator><creator>Jiao, Kui</creator><creator>Du, Qing</creator><general>Tianjin University</general><general>Springer Nature B.V</general><general>State Key Laboratory of Engines,Tianjin University,135 Yaguan Road,Tianjin 300350,China</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20230201</creationdate><title>Pore-Scale Investigation of Coupled Two-Phase and Reactive Transport in the Cathode Electrode of Proton Exchange Membrane Fuel Cells</title><author>Ye, Shengjie ; Hou, Yuze ; Li, Xing ; Jiao, Kui ; Du, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-63fa4f665f18fac1579d2fbb29571f4c43c89a0987310f5f3bab12d44b39c0b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cathodes</topic><topic>Concentration gradient</topic><topic>Diffusion layers</topic><topic>Electrodes</topic><topic>Engineering</topic><topic>Fuel cells</topic><topic>Gaseous diffusion</topic><topic>Humanities and Social Sciences</topic><topic>Mass transport</topic><topic>Mechanical Engineering</topic><topic>multidisciplinary</topic><topic>Oxygen</topic><topic>Porosity</topic><topic>Proton exchange membrane fuel cells</topic><topic>Protons</topic><topic>Research Article</topic><topic>Science</topic><topic>Transport phenomena</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Shengjie</creatorcontrib><creatorcontrib>Hou, Yuze</creatorcontrib><creatorcontrib>Li, Xing</creatorcontrib><creatorcontrib>Jiao, Kui</creatorcontrib><creatorcontrib>Du, Qing</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Transactions of Tianjin University</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Shengjie</au><au>Hou, Yuze</au><au>Li, Xing</au><au>Jiao, Kui</au><au>Du, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pore-Scale Investigation of Coupled Two-Phase and Reactive Transport in the Cathode Electrode of Proton Exchange Membrane Fuel Cells</atitle><jtitle>Transactions of Tianjin University</jtitle><stitle>Trans. Tianjin Univ</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>29</volume><issue>1</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1006-4982</issn><eissn>1995-8196</eissn><abstract>A three-dimensional multicomponent multiphase lattice Boltzmann model (LBM) is established to model the coupled two-phase and reactive transport phenomena in the cathode electrode of proton exchange membrane fuel cells. The gas diffusion layer (GDL) and microporous layer (MPL) are stochastically reconstructed with the inside dynamic distribution of oxygen and liquid water resolved, and the catalyst layer is simplified as a superthin layer to address the electrochemical reaction, which provides a clear description of the flooding effect on mass transport and performance. Different kinds of electrodes are reconstructed to determine the optimum porosity and structure design of the GDL and MPL by comparing the transport resistance and performance under the flooding condition. The simulation results show that gradient porosity GDL helps to increase the reactive area and average concentration under flooding. The presence of the MPL ensures the oxygen transport space and reaction area because liquid water cannot transport through micropores. Moreover, the MPL helps in the uniform distribution of oxygen for an efficient in-plane transport capacity. Crack and perforation structures can accelerate the water transport in the assembly. The systematic perforation design yields the best performance under flooding by separating the transport of liquid water and oxygen.</abstract><cop>Tianjin</cop><pub>Tianjin University</pub><doi>10.1007/s12209-021-00309-4</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1006-4982 |
ispartof | Transactions of Tianjin University, 2023-02, Vol.29 (1), p.1-13 |
issn | 1006-4982 1995-8196 |
language | eng |
recordid | cdi_wanfang_journals_tianjdxxb_e202301001 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Cathodes Concentration gradient Diffusion layers Electrodes Engineering Fuel cells Gaseous diffusion Humanities and Social Sciences Mass transport Mechanical Engineering multidisciplinary Oxygen Porosity Proton exchange membrane fuel cells Protons Research Article Science Transport phenomena Water |
title | Pore-Scale Investigation of Coupled Two-Phase and Reactive Transport in the Cathode Electrode of Proton Exchange Membrane Fuel Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A38%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pore-Scale%20Investigation%20of%20Coupled%20Two-Phase%20and%20Reactive%20Transport%20in%20the%20Cathode%20Electrode%20of%20Proton%20Exchange%20Membrane%20Fuel%20Cells&rft.jtitle=Transactions%20of%20Tianjin%20University&rft.au=Ye,%20Shengjie&rft.date=2023-02-01&rft.volume=29&rft.issue=1&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1006-4982&rft.eissn=1995-8196&rft_id=info:doi/10.1007/s12209-021-00309-4&rft_dat=%3Cwanfang_jour_proqu%3Etianjdxxb_e202301001%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2776067761&rft_id=info:pmid/&rft_wanfj_id=tianjdxxb_e202301001&rfr_iscdi=true |