Alertness Staging Based on Improved Self-Organizing Map

In order to classify the alertness status, 19 channels of electroencephalogram(EEG) signals from 5 subjects were acquired during daytime nap. Ten different types of features(including time domain features, frequency domain features and nonlinear features) were extracted from EEG signals, and an impr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of Tianjin University 2013-12, Vol.19 (6), p.459-462
1. Verfasser: 王学民 张翼 李向新 刘雅婷 曹红宝 周鹏 王晓璐 高翔
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 462
container_issue 6
container_start_page 459
container_title Transactions of Tianjin University
container_volume 19
creator 王学民 张翼 李向新 刘雅婷 曹红宝 周鹏 王晓璐 高翔
description In order to classify the alertness status, 19 channels of electroencephalogram(EEG) signals from 5 subjects were acquired during daytime nap. Ten different types of features(including time domain features, frequency domain features and nonlinear features) were extracted from EEG signals, and an improved self-organizing map(ISOM) neuron network was proposed, which successfully identify three different brain status of the subjects: awareness, drowsiness and sleep. Compared with traditional SOM, the experiment results show that the ISOM generates much better classification accuracy, reaching as high as 89.59%.
doi_str_mv 10.1007/s12209-013-2027-3
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_tianjdxxb_e201306012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>48072029</cqvip_id><wanfj_id>tianjdxxb_e201306012</wanfj_id><sourcerecordid>tianjdxxb_e201306012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2182-334fb185c0a74e2061fbcc823fde1419d0ba4034761afff5a1e2744da6f7a9643</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwA9jCjuE9243jsVR8VCrqUJgtJ7FDqtYpdoHCr8dVEGxM7w3n3CtdQs4RrhBAXkdkDBQF5JQBk5QfkAEqNaIFqvww_QA5Fapgx-QkxiWAUCBxQOR4ZcPW2xizxdY0rW-yGxNtnXU-m643oXtP_8KuHJ2Hxvj2a088ms0pOXJmFe3Zzx2S57vbp8kDnc3vp5PxjFYMC0Y5F67EYlSBkcIyyNGVVVUw7mqLAlUNpRHAhczROOdGBi2TQtQmd9KoXPAhuexzP4x3xjd62b0Fnxr1tjV-We92pU65yCEHZAnHHq9CF2OwTm9CuzbhUyPo_VC6H0onQ--H0jw5rHdiYn1jw1_Hf9LFT9FL55vX5P02iQJkohT_BlBVdPY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Alertness Staging Based on Improved Self-Organizing Map</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>王学民 张翼 李向新 刘雅婷 曹红宝 周鹏 王晓璐 高翔</creator><creatorcontrib>王学民 张翼 李向新 刘雅婷 曹红宝 周鹏 王晓璐 高翔</creatorcontrib><description>In order to classify the alertness status, 19 channels of electroencephalogram(EEG) signals from 5 subjects were acquired during daytime nap. Ten different types of features(including time domain features, frequency domain features and nonlinear features) were extracted from EEG signals, and an improved self-organizing map(ISOM) neuron network was proposed, which successfully identify three different brain status of the subjects: awareness, drowsiness and sleep. Compared with traditional SOM, the experiment results show that the ISOM generates much better classification accuracy, reaching as high as 89.59%.</description><identifier>ISSN: 1006-4982</identifier><identifier>EISSN: 1995-8196</identifier><identifier>DOI: 10.1007/s12209-013-2027-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Engineering ; Humanities and Social Sciences ; Mechanical Engineering ; multidisciplinary ; Science ; 分类精度 ; 异构化装置 ; 时域特性 ; 神经网络 ; 脑电信号 ; 自组织映射 ; 非线性特征 ; 频域特性</subject><ispartof>Transactions of Tianjin University, 2013-12, Vol.19 (6), p.459-462</ispartof><rights>Tianjin University and Springer-Verlag Berlin Heidelberg 2013</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2182-334fb185c0a74e2061fbcc823fde1419d0ba4034761afff5a1e2744da6f7a9643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85460X/85460X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12209-013-2027-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12209-013-2027-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>王学民 张翼 李向新 刘雅婷 曹红宝 周鹏 王晓璐 高翔</creatorcontrib><title>Alertness Staging Based on Improved Self-Organizing Map</title><title>Transactions of Tianjin University</title><addtitle>Trans. Tianjin Univ</addtitle><addtitle>Transactions of Tianjin University</addtitle><description>In order to classify the alertness status, 19 channels of electroencephalogram(EEG) signals from 5 subjects were acquired during daytime nap. Ten different types of features(including time domain features, frequency domain features and nonlinear features) were extracted from EEG signals, and an improved self-organizing map(ISOM) neuron network was proposed, which successfully identify three different brain status of the subjects: awareness, drowsiness and sleep. Compared with traditional SOM, the experiment results show that the ISOM generates much better classification accuracy, reaching as high as 89.59%.</description><subject>Engineering</subject><subject>Humanities and Social Sciences</subject><subject>Mechanical Engineering</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>分类精度</subject><subject>异构化装置</subject><subject>时域特性</subject><subject>神经网络</subject><subject>脑电信号</subject><subject>自组织映射</subject><subject>非线性特征</subject><subject>频域特性</subject><issn>1006-4982</issn><issn>1995-8196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwA9jCjuE9243jsVR8VCrqUJgtJ7FDqtYpdoHCr8dVEGxM7w3n3CtdQs4RrhBAXkdkDBQF5JQBk5QfkAEqNaIFqvww_QA5Fapgx-QkxiWAUCBxQOR4ZcPW2xizxdY0rW-yGxNtnXU-m643oXtP_8KuHJ2Hxvj2a088ms0pOXJmFe3Zzx2S57vbp8kDnc3vp5PxjFYMC0Y5F67EYlSBkcIyyNGVVVUw7mqLAlUNpRHAhczROOdGBi2TQtQmd9KoXPAhuexzP4x3xjd62b0Fnxr1tjV-We92pU65yCEHZAnHHq9CF2OwTm9CuzbhUyPo_VC6H0onQ--H0jw5rHdiYn1jw1_Hf9LFT9FL55vX5P02iQJkohT_BlBVdPY</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>王学民 张翼 李向新 刘雅婷 曹红宝 周鹏 王晓璐 高翔</creator><general>Springer Berlin Heidelberg</general><general>School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China%Department of Biomedical Engineering, Tulane University, New Orleans 70112, USA</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>201312</creationdate><title>Alertness Staging Based on Improved Self-Organizing Map</title><author>王学民 张翼 李向新 刘雅婷 曹红宝 周鹏 王晓璐 高翔</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2182-334fb185c0a74e2061fbcc823fde1419d0ba4034761afff5a1e2744da6f7a9643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Engineering</topic><topic>Humanities and Social Sciences</topic><topic>Mechanical Engineering</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>分类精度</topic><topic>异构化装置</topic><topic>时域特性</topic><topic>神经网络</topic><topic>脑电信号</topic><topic>自组织映射</topic><topic>非线性特征</topic><topic>频域特性</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>王学民 张翼 李向新 刘雅婷 曹红宝 周鹏 王晓璐 高翔</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Transactions of Tianjin University</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>王学民 张翼 李向新 刘雅婷 曹红宝 周鹏 王晓璐 高翔</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alertness Staging Based on Improved Self-Organizing Map</atitle><jtitle>Transactions of Tianjin University</jtitle><stitle>Trans. Tianjin Univ</stitle><addtitle>Transactions of Tianjin University</addtitle><date>2013-12</date><risdate>2013</risdate><volume>19</volume><issue>6</issue><spage>459</spage><epage>462</epage><pages>459-462</pages><issn>1006-4982</issn><eissn>1995-8196</eissn><abstract>In order to classify the alertness status, 19 channels of electroencephalogram(EEG) signals from 5 subjects were acquired during daytime nap. Ten different types of features(including time domain features, frequency domain features and nonlinear features) were extracted from EEG signals, and an improved self-organizing map(ISOM) neuron network was proposed, which successfully identify three different brain status of the subjects: awareness, drowsiness and sleep. Compared with traditional SOM, the experiment results show that the ISOM generates much better classification accuracy, reaching as high as 89.59%.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12209-013-2027-3</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1006-4982
ispartof Transactions of Tianjin University, 2013-12, Vol.19 (6), p.459-462
issn 1006-4982
1995-8196
language eng
recordid cdi_wanfang_journals_tianjdxxb_e201306012
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Engineering
Humanities and Social Sciences
Mechanical Engineering
multidisciplinary
Science
分类精度
异构化装置
时域特性
神经网络
脑电信号
自组织映射
非线性特征
频域特性
title Alertness Staging Based on Improved Self-Organizing Map
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A45%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alertness%20Staging%20Based%20on%20Improved%20Self-Organizing%20Map&rft.jtitle=Transactions%20of%20Tianjin%20University&rft.au=%E7%8E%8B%E5%AD%A6%E6%B0%91%20%E5%BC%A0%E7%BF%BC%20%E6%9D%8E%E5%90%91%E6%96%B0%20%E5%88%98%E9%9B%85%E5%A9%B7%20%E6%9B%B9%E7%BA%A2%E5%AE%9D%20%E5%91%A8%E9%B9%8F%20%E7%8E%8B%E6%99%93%E7%92%90%20%E9%AB%98%E7%BF%94&rft.date=2013-12&rft.volume=19&rft.issue=6&rft.spage=459&rft.epage=462&rft.pages=459-462&rft.issn=1006-4982&rft.eissn=1995-8196&rft_id=info:doi/10.1007/s12209-013-2027-3&rft_dat=%3Cwanfang_jour_cross%3Etianjdxxb_e201306012%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=48072029&rft_wanfj_id=tianjdxxb_e201306012&rfr_iscdi=true