Alertness Staging Based on Improved Self-Organizing Map
In order to classify the alertness status, 19 channels of electroencephalogram(EEG) signals from 5 subjects were acquired during daytime nap. Ten different types of features(including time domain features, frequency domain features and nonlinear features) were extracted from EEG signals, and an impr...
Gespeichert in:
Veröffentlicht in: | Transactions of Tianjin University 2013-12, Vol.19 (6), p.459-462 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 462 |
---|---|
container_issue | 6 |
container_start_page | 459 |
container_title | Transactions of Tianjin University |
container_volume | 19 |
creator | 王学民 张翼 李向新 刘雅婷 曹红宝 周鹏 王晓璐 高翔 |
description | In order to classify the alertness status, 19 channels of electroencephalogram(EEG) signals from 5 subjects were acquired during daytime nap. Ten different types of features(including time domain features, frequency domain features and nonlinear features) were extracted from EEG signals, and an improved self-organizing map(ISOM) neuron network was proposed, which successfully identify three different brain status of the subjects: awareness, drowsiness and sleep. Compared with traditional SOM, the experiment results show that the ISOM generates much better classification accuracy, reaching as high as 89.59%. |
doi_str_mv | 10.1007/s12209-013-2027-3 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_tianjdxxb_e201306012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>48072029</cqvip_id><wanfj_id>tianjdxxb_e201306012</wanfj_id><sourcerecordid>tianjdxxb_e201306012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2182-334fb185c0a74e2061fbcc823fde1419d0ba4034761afff5a1e2744da6f7a9643</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwA9jCjuE9243jsVR8VCrqUJgtJ7FDqtYpdoHCr8dVEGxM7w3n3CtdQs4RrhBAXkdkDBQF5JQBk5QfkAEqNaIFqvww_QA5Fapgx-QkxiWAUCBxQOR4ZcPW2xizxdY0rW-yGxNtnXU-m643oXtP_8KuHJ2Hxvj2a088ms0pOXJmFe3Zzx2S57vbp8kDnc3vp5PxjFYMC0Y5F67EYlSBkcIyyNGVVVUw7mqLAlUNpRHAhczROOdGBi2TQtQmd9KoXPAhuexzP4x3xjd62b0Fnxr1tjV-We92pU65yCEHZAnHHq9CF2OwTm9CuzbhUyPo_VC6H0onQ--H0jw5rHdiYn1jw1_Hf9LFT9FL55vX5P02iQJkohT_BlBVdPY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Alertness Staging Based on Improved Self-Organizing Map</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>王学民 张翼 李向新 刘雅婷 曹红宝 周鹏 王晓璐 高翔</creator><creatorcontrib>王学民 张翼 李向新 刘雅婷 曹红宝 周鹏 王晓璐 高翔</creatorcontrib><description>In order to classify the alertness status, 19 channels of electroencephalogram(EEG) signals from 5 subjects were acquired during daytime nap. Ten different types of features(including time domain features, frequency domain features and nonlinear features) were extracted from EEG signals, and an improved self-organizing map(ISOM) neuron network was proposed, which successfully identify three different brain status of the subjects: awareness, drowsiness and sleep. Compared with traditional SOM, the experiment results show that the ISOM generates much better classification accuracy, reaching as high as 89.59%.</description><identifier>ISSN: 1006-4982</identifier><identifier>EISSN: 1995-8196</identifier><identifier>DOI: 10.1007/s12209-013-2027-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Engineering ; Humanities and Social Sciences ; Mechanical Engineering ; multidisciplinary ; Science ; 分类精度 ; 异构化装置 ; 时域特性 ; 神经网络 ; 脑电信号 ; 自组织映射 ; 非线性特征 ; 频域特性</subject><ispartof>Transactions of Tianjin University, 2013-12, Vol.19 (6), p.459-462</ispartof><rights>Tianjin University and Springer-Verlag Berlin Heidelberg 2013</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2182-334fb185c0a74e2061fbcc823fde1419d0ba4034761afff5a1e2744da6f7a9643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85460X/85460X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12209-013-2027-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12209-013-2027-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>王学民 张翼 李向新 刘雅婷 曹红宝 周鹏 王晓璐 高翔</creatorcontrib><title>Alertness Staging Based on Improved Self-Organizing Map</title><title>Transactions of Tianjin University</title><addtitle>Trans. Tianjin Univ</addtitle><addtitle>Transactions of Tianjin University</addtitle><description>In order to classify the alertness status, 19 channels of electroencephalogram(EEG) signals from 5 subjects were acquired during daytime nap. Ten different types of features(including time domain features, frequency domain features and nonlinear features) were extracted from EEG signals, and an improved self-organizing map(ISOM) neuron network was proposed, which successfully identify three different brain status of the subjects: awareness, drowsiness and sleep. Compared with traditional SOM, the experiment results show that the ISOM generates much better classification accuracy, reaching as high as 89.59%.</description><subject>Engineering</subject><subject>Humanities and Social Sciences</subject><subject>Mechanical Engineering</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>分类精度</subject><subject>异构化装置</subject><subject>时域特性</subject><subject>神经网络</subject><subject>脑电信号</subject><subject>自组织映射</subject><subject>非线性特征</subject><subject>频域特性</subject><issn>1006-4982</issn><issn>1995-8196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwA9jCjuE9243jsVR8VCrqUJgtJ7FDqtYpdoHCr8dVEGxM7w3n3CtdQs4RrhBAXkdkDBQF5JQBk5QfkAEqNaIFqvww_QA5Fapgx-QkxiWAUCBxQOR4ZcPW2xizxdY0rW-yGxNtnXU-m643oXtP_8KuHJ2Hxvj2a088ms0pOXJmFe3Zzx2S57vbp8kDnc3vp5PxjFYMC0Y5F67EYlSBkcIyyNGVVVUw7mqLAlUNpRHAhczROOdGBi2TQtQmd9KoXPAhuexzP4x3xjd62b0Fnxr1tjV-We92pU65yCEHZAnHHq9CF2OwTm9CuzbhUyPo_VC6H0onQ--H0jw5rHdiYn1jw1_Hf9LFT9FL55vX5P02iQJkohT_BlBVdPY</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>王学民 张翼 李向新 刘雅婷 曹红宝 周鹏 王晓璐 高翔</creator><general>Springer Berlin Heidelberg</general><general>School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China%Department of Biomedical Engineering, Tulane University, New Orleans 70112, USA</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>201312</creationdate><title>Alertness Staging Based on Improved Self-Organizing Map</title><author>王学民 张翼 李向新 刘雅婷 曹红宝 周鹏 王晓璐 高翔</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2182-334fb185c0a74e2061fbcc823fde1419d0ba4034761afff5a1e2744da6f7a9643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Engineering</topic><topic>Humanities and Social Sciences</topic><topic>Mechanical Engineering</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>分类精度</topic><topic>异构化装置</topic><topic>时域特性</topic><topic>神经网络</topic><topic>脑电信号</topic><topic>自组织映射</topic><topic>非线性特征</topic><topic>频域特性</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>王学民 张翼 李向新 刘雅婷 曹红宝 周鹏 王晓璐 高翔</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Transactions of Tianjin University</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>王学民 张翼 李向新 刘雅婷 曹红宝 周鹏 王晓璐 高翔</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alertness Staging Based on Improved Self-Organizing Map</atitle><jtitle>Transactions of Tianjin University</jtitle><stitle>Trans. Tianjin Univ</stitle><addtitle>Transactions of Tianjin University</addtitle><date>2013-12</date><risdate>2013</risdate><volume>19</volume><issue>6</issue><spage>459</spage><epage>462</epage><pages>459-462</pages><issn>1006-4982</issn><eissn>1995-8196</eissn><abstract>In order to classify the alertness status, 19 channels of electroencephalogram(EEG) signals from 5 subjects were acquired during daytime nap. Ten different types of features(including time domain features, frequency domain features and nonlinear features) were extracted from EEG signals, and an improved self-organizing map(ISOM) neuron network was proposed, which successfully identify three different brain status of the subjects: awareness, drowsiness and sleep. Compared with traditional SOM, the experiment results show that the ISOM generates much better classification accuracy, reaching as high as 89.59%.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12209-013-2027-3</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1006-4982 |
ispartof | Transactions of Tianjin University, 2013-12, Vol.19 (6), p.459-462 |
issn | 1006-4982 1995-8196 |
language | eng |
recordid | cdi_wanfang_journals_tianjdxxb_e201306012 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Engineering Humanities and Social Sciences Mechanical Engineering multidisciplinary Science 分类精度 异构化装置 时域特性 神经网络 脑电信号 自组织映射 非线性特征 频域特性 |
title | Alertness Staging Based on Improved Self-Organizing Map |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A45%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alertness%20Staging%20Based%20on%20Improved%20Self-Organizing%20Map&rft.jtitle=Transactions%20of%20Tianjin%20University&rft.au=%E7%8E%8B%E5%AD%A6%E6%B0%91%20%E5%BC%A0%E7%BF%BC%20%E6%9D%8E%E5%90%91%E6%96%B0%20%E5%88%98%E9%9B%85%E5%A9%B7%20%E6%9B%B9%E7%BA%A2%E5%AE%9D%20%E5%91%A8%E9%B9%8F%20%E7%8E%8B%E6%99%93%E7%92%90%20%E9%AB%98%E7%BF%94&rft.date=2013-12&rft.volume=19&rft.issue=6&rft.spage=459&rft.epage=462&rft.pages=459-462&rft.issn=1006-4982&rft.eissn=1995-8196&rft_id=info:doi/10.1007/s12209-013-2027-3&rft_dat=%3Cwanfang_jour_cross%3Etianjdxxb_e201306012%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=48072029&rft_wanfj_id=tianjdxxb_e201306012&rfr_iscdi=true |