环中Lie理想上的右导子

文中研究了环中的右导子,通过对环的限制和已有结论,证明了当R为2-扭自由的环,若可加映射d在Lie理想上满足右导子性质时,证明了一些恒等式成立。

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:通化师范学院学报 2014-12, Vol.35 (12), p.37-39
1. Verfasser: 王奕涵 王云庆
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39
container_issue 12
container_start_page 37
container_title 通化师范学院学报
container_volume 35
creator 王奕涵 王云庆
description 文中研究了环中的右导子,通过对环的限制和已有结论,证明了当R为2-扭自由的环,若可加映射d在Lie理想上满足右导子性质时,证明了一些恒等式成立。
format Article
fullrecord <record><control><sourceid>cass_wanfa</sourceid><recordid>TN_cdi_wanfang_journals_thsfxyxb201412013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cass_id>663285375</cass_id><cqvip_id>663285375</cqvip_id><wanfj_id>thsfxyxb201412013</wanfj_id><sourcerecordid>663285375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c803-32a5cdfe3faa5776a1c89866991acf3fb75ddd87b1dffd80c321df0ba074c72a3</originalsourceid><addsrcrecordid>eNpNjb1KA0EcxLdQMMS8gIWFncXBftx-XCnBLziwSX_8d_c2OdGN3iomtWJhoal9h5AiTQofJ-e9RhaSIs3MwPyYOUAdgrFKZCbTI9QLodIYE4JpmvIOOm2_F-vVPK_Kdvb5_75cr77a34_mZ9ks_pr57BgdOngIZW_nXTS4uhz0b5L87vq2f5EnRmGWMArcWFcyB8ClFECMypQQWUbAOOa05NZaJTWxzlmFDaMxYQ1YpkZSYF10vp19A-_AD4v78Wvt42HxMgpuMp1oiklKorDInmxZAyEUPgRbCMGo4kzyWJ7tytHYD5-rOPVUV49QT_egDe2RV9c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>环中Lie理想上的右导子</title><source>国家哲学社会科学学术期刊数据库 (National Social Sciences Database)</source><creator>王奕涵 王云庆</creator><creatorcontrib>王奕涵 王云庆</creatorcontrib><description>文中研究了环中的右导子,通过对环的限制和已有结论,证明了当R为2-扭自由的环,若可加映射d在Lie理想上满足右导子性质时,证明了一些恒等式成立。</description><identifier>ISSN: 1008-7974</identifier><language>chi</language><publisher>通化师范学院</publisher><subject>2-扭自由 ; Lie理想 ; 右导子</subject><ispartof>通化师范学院学报, 2014-12, Vol.35 (12), p.37-39</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/83318X/83318X.jpg</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>王奕涵 王云庆</creatorcontrib><title>环中Lie理想上的右导子</title><title>通化师范学院学报</title><addtitle>Journal of Tonghua Teachers College</addtitle><description>文中研究了环中的右导子,通过对环的限制和已有结论,证明了当R为2-扭自由的环,若可加映射d在Lie理想上满足右导子性质时,证明了一些恒等式成立。</description><subject>2-扭自由</subject><subject>Lie理想</subject><subject>右导子</subject><issn>1008-7974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpNjb1KA0EcxLdQMMS8gIWFncXBftx-XCnBLziwSX_8d_c2OdGN3iomtWJhoal9h5AiTQofJ-e9RhaSIs3MwPyYOUAdgrFKZCbTI9QLodIYE4JpmvIOOm2_F-vVPK_Kdvb5_75cr77a34_mZ9ks_pr57BgdOngIZW_nXTS4uhz0b5L87vq2f5EnRmGWMArcWFcyB8ClFECMypQQWUbAOOa05NZaJTWxzlmFDaMxYQ1YpkZSYF10vp19A-_AD4v78Wvt42HxMgpuMp1oiklKorDInmxZAyEUPgRbCMGo4kzyWJ7tytHYD5-rOPVUV49QT_egDe2RV9c</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>王奕涵 王云庆</creator><general>通化师范学院</general><general>吉林师范大学 数学学院,吉林 长春,130103</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>NSCOK</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20141201</creationdate><title>环中Lie理想上的右导子</title><author>王奕涵 王云庆</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c803-32a5cdfe3faa5776a1c89866991acf3fb75ddd87b1dffd80c321df0ba074c72a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2014</creationdate><topic>2-扭自由</topic><topic>Lie理想</topic><topic>右导子</topic><toplevel>online_resources</toplevel><creatorcontrib>王奕涵 王云庆</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>国家哲学社会科学文献中心 (National Center for Philosophy and Social Sciences Documentation)</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>通化师范学院学报</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>王奕涵 王云庆</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>环中Lie理想上的右导子</atitle><jtitle>通化师范学院学报</jtitle><addtitle>Journal of Tonghua Teachers College</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>35</volume><issue>12</issue><spage>37</spage><epage>39</epage><pages>37-39</pages><issn>1008-7974</issn><abstract>文中研究了环中的右导子,通过对环的限制和已有结论,证明了当R为2-扭自由的环,若可加映射d在Lie理想上满足右导子性质时,证明了一些恒等式成立。</abstract><pub>通化师范学院</pub><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1008-7974
ispartof 通化师范学院学报, 2014-12, Vol.35 (12), p.37-39
issn 1008-7974
language chi
recordid cdi_wanfang_journals_thsfxyxb201412013
source 国家哲学社会科学学术期刊数据库 (National Social Sciences Database)
subjects 2-扭自由
Lie理想
右导子
title 环中Lie理想上的右导子
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A31%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cass_wanfa&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E7%8E%AF%E4%B8%ADLie%E7%90%86%E6%83%B3%E4%B8%8A%E7%9A%84%E5%8F%B3%E5%AF%BC%E5%AD%90&rft.jtitle=%E9%80%9A%E5%8C%96%E5%B8%88%E8%8C%83%E5%AD%A6%E9%99%A2%E5%AD%A6%E6%8A%A5&rft.au=%E7%8E%8B%E5%A5%95%E6%B6%B5%20%E7%8E%8B%E4%BA%91%E5%BA%86&rft.date=2014-12-01&rft.volume=35&rft.issue=12&rft.spage=37&rft.epage=39&rft.pages=37-39&rft.issn=1008-7974&rft_id=info:doi/&rft_dat=%3Ccass_wanfa%3E663285375%3C/cass_wanfa%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cass_id=663285375&rft_cqvip_id=663285375&rft_wanfj_id=thsfxyxb201412013&rfr_iscdi=true