Viscosity prediction in selected Iranian light oil reservoirs: Artificial neural network versus empirical correlations

Viscosity is a parameter that plays a pivotal role in reservoir fluid estimations. Several approaches have been presented in the literature (Beal, 1946; Khan et al, 1987; Beggs and Robinson, 1975; Kartoatmodjo and Schmidt, 1994; Vasquez and Beggs, 1980; Chew and Connally, 1959; Elsharkawy and Alikha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Petroleum science 2013-03, Vol.10 (1), p.126-133
Hauptverfasser: Lashkenari, Mohammad Soleimani, Taghizadeh, Majid, Mehdizadeh, Bahman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 133
container_issue 1
container_start_page 126
container_title Petroleum science
container_volume 10
creator Lashkenari, Mohammad Soleimani
Taghizadeh, Majid
Mehdizadeh, Bahman
description Viscosity is a parameter that plays a pivotal role in reservoir fluid estimations. Several approaches have been presented in the literature (Beal, 1946; Khan et al, 1987; Beggs and Robinson, 1975; Kartoatmodjo and Schmidt, 1994; Vasquez and Beggs, 1980; Chew and Connally, 1959; Elsharkawy and Alikhan, 1999; Labedi, 1992) for predicting the viscosity of crude oil. However, the results obtained by these methods have significant errors when compared with the experimental data. In this study a robust artificial neural network (ANN) code was developed in the MATLAB software environment to predict the viscosity of Iranian crude oils. The results obtained by the ANN and the three well-established semi-empirical equations (Khan et al, 1987; Elsharkawy and Alikhan, 1999; Labedi, 1992) were compared with the experimental data. The prediction procedure was carried out at three different regimes: at, above and below the bubble-point pressure using the PVT data of 57 samples collected from central, southern and offshore oil fields of lran. It is confirmed that in comparison with the models previously published in literature, the ANN model has a better accuracy and performance in predicting the viscosity of Iranian crudes.
doi_str_mv 10.1007/s12182-013-0259-4
format Article
fullrecord <record><control><sourceid>wanfang_jour_C6C</sourceid><recordid>TN_cdi_wanfang_journals_sykx_e201301016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>44748648</cqvip_id><wanfj_id>sykx_e201301016</wanfj_id><sourcerecordid>sykx_e201301016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-598530abe26920f8e76cd581299ff3ab3c464adbcc39a6a7bc54c1c02127ae873</originalsourceid><addsrcrecordid>eNqFkU1uFDEQhVsIJELgAOzMCjYd7PJf9zKK-IkUiQ2wtTye6omTHntS7k4yV-Es3IkrxENHsINVlVTfq1eq1zSvBT8RnNv3RYDooOVCthx036onzZHoe912AOZp7Y2FVgtunzcvSrniXAlr4Ki5_x5LyCVOe7YjXMcwxZxYTKzgiGHCNTsnn6JPbIyby4nlODLCgnSbI5VfP3-wU5riEEP0I0s40-8y3WW6ZrdIZS4Mt7tIMdRByEQ4-oNFedk8G_xY8NVjPW6-ffzw9exze_Hl0_nZ6UUblNZTq_tOS-5XCKYHPnRoTVjrTkDfD4P0KxmUUX69CkH23ni7CloFETgIsB47K4-bt8veO58GnzbuKs-UqqMr--t7h1BfxgUXppLvFnJH-WbGMrlt_Q2Oo0-Y5-KEUQDScAP_RyVIUAIUr6hY0EC5FMLB7ShuPe2d4O4QnVuic_UOd4jOqaqBRVMqmzZIf4_-l-jNo9FlTpubqvvjpJRVnVGdfACWkapC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323241240</pqid></control><display><type>article</type><title>Viscosity prediction in selected Iranian light oil reservoirs: Artificial neural network versus empirical correlations</title><source>Springer Nature OA Free Journals</source><creator>Lashkenari, Mohammad Soleimani ; Taghizadeh, Majid ; Mehdizadeh, Bahman</creator><contributor>Zhu, X</contributor><creatorcontrib>Lashkenari, Mohammad Soleimani ; Taghizadeh, Majid ; Mehdizadeh, Bahman ; Zhu, X</creatorcontrib><description>Viscosity is a parameter that plays a pivotal role in reservoir fluid estimations. Several approaches have been presented in the literature (Beal, 1946; Khan et al, 1987; Beggs and Robinson, 1975; Kartoatmodjo and Schmidt, 1994; Vasquez and Beggs, 1980; Chew and Connally, 1959; Elsharkawy and Alikhan, 1999; Labedi, 1992) for predicting the viscosity of crude oil. However, the results obtained by these methods have significant errors when compared with the experimental data. In this study a robust artificial neural network (ANN) code was developed in the MATLAB software environment to predict the viscosity of Iranian crude oils. The results obtained by the ANN and the three well-established semi-empirical equations (Khan et al, 1987; Elsharkawy and Alikhan, 1999; Labedi, 1992) were compared with the experimental data. The prediction procedure was carried out at three different regimes: at, above and below the bubble-point pressure using the PVT data of 57 samples collected from central, southern and offshore oil fields of lran. It is confirmed that in comparison with the models previously published in literature, the ANN model has a better accuracy and performance in predicting the viscosity of Iranian crudes.</description><identifier>ISSN: 1672-5107</identifier><identifier>EISSN: 1995-8226</identifier><identifier>DOI: 10.1007/s12182-013-0259-4</identifier><language>eng</language><publisher>Beijing: China University of Petroleum (Beijing)</publisher><subject>Artificial neural networks ; Crude oil ; Earth and Environmental Science ; Earth Sciences ; Economics and Management ; Energy Policy ; Industrial and Production Engineering ; Industrial Chemistry/Chemical Engineering ; Learning theory ; Mathematical models ; MATLAB ; Mineral Resources ; Neural networks ; Reservoirs ; Schmidt ; Viscosity ; 人工神经网络模型 ; 伊朗 ; 实验数据 ; 粘度 ; 轻质油藏 ; 预测程序</subject><ispartof>Petroleum science, 2013-03, Vol.10 (1), p.126-133</ispartof><rights>China University of Petroleum (Beijing) and Springer-Verlag Berlin Heidelberg 2013</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-598530abe26920f8e76cd581299ff3ab3c464adbcc39a6a7bc54c1c02127ae873</citedby><cites>FETCH-LOGICAL-c455t-598530abe26920f8e76cd581299ff3ab3c464adbcc39a6a7bc54c1c02127ae873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/87756X/87756X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12182-013-0259-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/s12182-013-0259-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41096,42165,51551</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1007/s12182-013-0259-4$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc></links><search><contributor>Zhu, X</contributor><creatorcontrib>Lashkenari, Mohammad Soleimani</creatorcontrib><creatorcontrib>Taghizadeh, Majid</creatorcontrib><creatorcontrib>Mehdizadeh, Bahman</creatorcontrib><title>Viscosity prediction in selected Iranian light oil reservoirs: Artificial neural network versus empirical correlations</title><title>Petroleum science</title><addtitle>Pet. Sci</addtitle><addtitle>Petroleum Science</addtitle><description>Viscosity is a parameter that plays a pivotal role in reservoir fluid estimations. Several approaches have been presented in the literature (Beal, 1946; Khan et al, 1987; Beggs and Robinson, 1975; Kartoatmodjo and Schmidt, 1994; Vasquez and Beggs, 1980; Chew and Connally, 1959; Elsharkawy and Alikhan, 1999; Labedi, 1992) for predicting the viscosity of crude oil. However, the results obtained by these methods have significant errors when compared with the experimental data. In this study a robust artificial neural network (ANN) code was developed in the MATLAB software environment to predict the viscosity of Iranian crude oils. The results obtained by the ANN and the three well-established semi-empirical equations (Khan et al, 1987; Elsharkawy and Alikhan, 1999; Labedi, 1992) were compared with the experimental data. The prediction procedure was carried out at three different regimes: at, above and below the bubble-point pressure using the PVT data of 57 samples collected from central, southern and offshore oil fields of lran. It is confirmed that in comparison with the models previously published in literature, the ANN model has a better accuracy and performance in predicting the viscosity of Iranian crudes.</description><subject>Artificial neural networks</subject><subject>Crude oil</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Economics and Management</subject><subject>Energy Policy</subject><subject>Industrial and Production Engineering</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Learning theory</subject><subject>Mathematical models</subject><subject>MATLAB</subject><subject>Mineral Resources</subject><subject>Neural networks</subject><subject>Reservoirs</subject><subject>Schmidt</subject><subject>Viscosity</subject><subject>人工神经网络模型</subject><subject>伊朗</subject><subject>实验数据</subject><subject>粘度</subject><subject>轻质油藏</subject><subject>预测程序</subject><issn>1672-5107</issn><issn>1995-8226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkU1uFDEQhVsIJELgAOzMCjYd7PJf9zKK-IkUiQ2wtTye6omTHntS7k4yV-Es3IkrxENHsINVlVTfq1eq1zSvBT8RnNv3RYDooOVCthx036onzZHoe912AOZp7Y2FVgtunzcvSrniXAlr4Ki5_x5LyCVOe7YjXMcwxZxYTKzgiGHCNTsnn6JPbIyby4nlODLCgnSbI5VfP3-wU5riEEP0I0s40-8y3WW6ZrdIZS4Mt7tIMdRByEQ4-oNFedk8G_xY8NVjPW6-ffzw9exze_Hl0_nZ6UUblNZTq_tOS-5XCKYHPnRoTVjrTkDfD4P0KxmUUX69CkH23ni7CloFETgIsB47K4-bt8veO58GnzbuKs-UqqMr--t7h1BfxgUXppLvFnJH-WbGMrlt_Q2Oo0-Y5-KEUQDScAP_RyVIUAIUr6hY0EC5FMLB7ShuPe2d4O4QnVuic_UOd4jOqaqBRVMqmzZIf4_-l-jNo9FlTpubqvvjpJRVnVGdfACWkapC</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Lashkenari, Mohammad Soleimani</creator><creator>Taghizadeh, Majid</creator><creator>Mehdizadeh, Bahman</creator><general>China University of Petroleum (Beijing)</general><general>Chemical Engineering Department, Babol University of Technology, P.O.Box 484, 4714871167 Babol, Iran%National Iranian South Oil Company, Ahwaz, Iran</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>L.G</scope><scope>P64</scope><scope>7TB</scope><scope>KR7</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20130301</creationdate><title>Viscosity prediction in selected Iranian light oil reservoirs: Artificial neural network versus empirical correlations</title><author>Lashkenari, Mohammad Soleimani ; Taghizadeh, Majid ; Mehdizadeh, Bahman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-598530abe26920f8e76cd581299ff3ab3c464adbcc39a6a7bc54c1c02127ae873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Artificial neural networks</topic><topic>Crude oil</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Economics and Management</topic><topic>Energy Policy</topic><topic>Industrial and Production Engineering</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Learning theory</topic><topic>Mathematical models</topic><topic>MATLAB</topic><topic>Mineral Resources</topic><topic>Neural networks</topic><topic>Reservoirs</topic><topic>Schmidt</topic><topic>Viscosity</topic><topic>人工神经网络模型</topic><topic>伊朗</topic><topic>实验数据</topic><topic>粘度</topic><topic>轻质油藏</topic><topic>预测程序</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lashkenari, Mohammad Soleimani</creatorcontrib><creatorcontrib>Taghizadeh, Majid</creatorcontrib><creatorcontrib>Mehdizadeh, Bahman</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Civil Engineering Abstracts</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Petroleum science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lashkenari, Mohammad Soleimani</au><au>Taghizadeh, Majid</au><au>Mehdizadeh, Bahman</au><au>Zhu, X</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viscosity prediction in selected Iranian light oil reservoirs: Artificial neural network versus empirical correlations</atitle><jtitle>Petroleum science</jtitle><stitle>Pet. Sci</stitle><addtitle>Petroleum Science</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>10</volume><issue>1</issue><spage>126</spage><epage>133</epage><pages>126-133</pages><issn>1672-5107</issn><eissn>1995-8226</eissn><abstract>Viscosity is a parameter that plays a pivotal role in reservoir fluid estimations. Several approaches have been presented in the literature (Beal, 1946; Khan et al, 1987; Beggs and Robinson, 1975; Kartoatmodjo and Schmidt, 1994; Vasquez and Beggs, 1980; Chew and Connally, 1959; Elsharkawy and Alikhan, 1999; Labedi, 1992) for predicting the viscosity of crude oil. However, the results obtained by these methods have significant errors when compared with the experimental data. In this study a robust artificial neural network (ANN) code was developed in the MATLAB software environment to predict the viscosity of Iranian crude oils. The results obtained by the ANN and the three well-established semi-empirical equations (Khan et al, 1987; Elsharkawy and Alikhan, 1999; Labedi, 1992) were compared with the experimental data. The prediction procedure was carried out at three different regimes: at, above and below the bubble-point pressure using the PVT data of 57 samples collected from central, southern and offshore oil fields of lran. It is confirmed that in comparison with the models previously published in literature, the ANN model has a better accuracy and performance in predicting the viscosity of Iranian crudes.</abstract><cop>Beijing</cop><pub>China University of Petroleum (Beijing)</pub><doi>10.1007/s12182-013-0259-4</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1672-5107
ispartof Petroleum science, 2013-03, Vol.10 (1), p.126-133
issn 1672-5107
1995-8226
language eng
recordid cdi_wanfang_journals_sykx_e201301016
source Springer Nature OA Free Journals
subjects Artificial neural networks
Crude oil
Earth and Environmental Science
Earth Sciences
Economics and Management
Energy Policy
Industrial and Production Engineering
Industrial Chemistry/Chemical Engineering
Learning theory
Mathematical models
MATLAB
Mineral Resources
Neural networks
Reservoirs
Schmidt
Viscosity
人工神经网络模型
伊朗
实验数据
粘度
轻质油藏
预测程序
title Viscosity prediction in selected Iranian light oil reservoirs: Artificial neural network versus empirical correlations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T06%3A52%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viscosity%20prediction%20in%20selected%20Iranian%20light%20oil%20reservoirs%EF%BC%9A%20Artificial%20neural%20network%20versus%20empirical%20correlations&rft.jtitle=Petroleum%20science&rft.au=Lashkenari,%20Mohammad%20Soleimani&rft.date=2013-03-01&rft.volume=10&rft.issue=1&rft.spage=126&rft.epage=133&rft.pages=126-133&rft.issn=1672-5107&rft.eissn=1995-8226&rft_id=info:doi/10.1007/s12182-013-0259-4&rft_dat=%3Cwanfang_jour_C6C%3Esykx_e201301016%3C/wanfang_jour_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1323241240&rft_id=info:pmid/&rft_cqvip_id=44748648&rft_wanfj_id=sykx_e201301016&rfr_iscdi=true