A NOTE ON MEASURE-THEORETIC EQUICONTINUITY AND RIGIDITY
Given a topological dynamical system(X,T)and a T-invariant measure μ,let B denote the Borel σ-algebra on X.This paper proves that(X,B,μ,T)is rigid if and only if(X,T)is μ-A-equicontinuous in the mean for some subsequence A of N,and a function f ∈ L2(μ)is rigid if and only if f is μ-A-equicontinuous...
Gespeichert in:
Veröffentlicht in: | 数学物理学报(英文版) 2022, Vol.42 (2), p.769-773 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 773 |
---|---|
container_issue | 2 |
container_start_page | 769 |
container_title | 数学物理学报(英文版) |
container_volume | 42 |
creator | Chiyi LUO Yun ZHAO |
description | Given a topological dynamical system(X,T)and a T-invariant measure μ,let B denote the Borel σ-algebra on X.This paper proves that(X,B,μ,T)is rigid if and only if(X,T)is μ-A-equicontinuous in the mean for some subsequence A of N,and a function f ∈ L2(μ)is rigid if and only if f is μ-A-equicontinuous in the mean for some subsequence A of N.In particular,this gives a positive answer to Question 4.11 in[1]. |
doi_str_mv | 10.3969/j.issn.0252-9602.2022.02.021 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour</sourceid><recordid>TN_cdi_wanfang_journals_sxwlxb_e202202021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>sxwlxb_e202202021</wanfj_id><sourcerecordid>sxwlxb_e202202021</sourcerecordid><originalsourceid>FETCH-wanfang_journals_sxwlxb_e2022020213</originalsourceid><addsrcrecordid>eNqVTrsKwjAAzKBgffxDBheHxiTVSMfSRpvBBGM6OJUKrVhKBIO0n28EcZc7OO4xHABLglEUs3jdortzFmG6pWHMMEUUU-qtJxmB4JdPwNS5FmPCKNsEYJdAqQyHSsIjT86F5qHJudLciBTyUyFSJY2QhTAXmMgManEQmTdzMG6qztWLr87Aas9Nmod9ZZvK3sr28Xpa35Ru6LvhWtafP9iDRP9s31K8PQE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A NOTE ON MEASURE-THEORETIC EQUICONTINUITY AND RIGIDITY</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Chiyi LUO ; Yun ZHAO</creator><creatorcontrib>Chiyi LUO ; Yun ZHAO</creatorcontrib><description>Given a topological dynamical system(X,T)and a T-invariant measure μ,let B denote the Borel σ-algebra on X.This paper proves that(X,B,μ,T)is rigid if and only if(X,T)is μ-A-equicontinuous in the mean for some subsequence A of N,and a function f ∈ L2(μ)is rigid if and only if f is μ-A-equicontinuous in the mean for some subsequence A of N.In particular,this gives a positive answer to Question 4.11 in[1].</description><identifier>ISSN: 0252-9602</identifier><identifier>DOI: 10.3969/j.issn.0252-9602.2022.02.021</identifier><language>eng</language><publisher>School of Mathematical Sciences and Center for Dynamical Systems and Differential Equations,Soochow University,Suzhou 215006,China</publisher><ispartof>数学物理学报(英文版), 2022, Vol.42 (2), p.769-773</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/sxwlxb-e/sxwlxb-e.jpg</thumbnail><link.rule.ids>314,780,784,4021,27921,27922,27923</link.rule.ids></links><search><creatorcontrib>Chiyi LUO</creatorcontrib><creatorcontrib>Yun ZHAO</creatorcontrib><title>A NOTE ON MEASURE-THEORETIC EQUICONTINUITY AND RIGIDITY</title><title>数学物理学报(英文版)</title><description>Given a topological dynamical system(X,T)and a T-invariant measure μ,let B denote the Borel σ-algebra on X.This paper proves that(X,B,μ,T)is rigid if and only if(X,T)is μ-A-equicontinuous in the mean for some subsequence A of N,and a function f ∈ L2(μ)is rigid if and only if f is μ-A-equicontinuous in the mean for some subsequence A of N.In particular,this gives a positive answer to Question 4.11 in[1].</description><issn>0252-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqVTrsKwjAAzKBgffxDBheHxiTVSMfSRpvBBGM6OJUKrVhKBIO0n28EcZc7OO4xHABLglEUs3jdortzFmG6pWHMMEUUU-qtJxmB4JdPwNS5FmPCKNsEYJdAqQyHSsIjT86F5qHJudLciBTyUyFSJY2QhTAXmMgManEQmTdzMG6qztWLr87Aas9Nmod9ZZvK3sr28Xpa35Ru6LvhWtafP9iDRP9s31K8PQE</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Chiyi LUO</creator><creator>Yun ZHAO</creator><general>School of Mathematical Sciences and Center for Dynamical Systems and Differential Equations,Soochow University,Suzhou 215006,China</general><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2022</creationdate><title>A NOTE ON MEASURE-THEORETIC EQUICONTINUITY AND RIGIDITY</title><author>Chiyi LUO ; Yun ZHAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-wanfang_journals_sxwlxb_e2022020213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiyi LUO</creatorcontrib><creatorcontrib>Yun ZHAO</creatorcontrib><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>数学物理学报(英文版)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiyi LUO</au><au>Yun ZHAO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A NOTE ON MEASURE-THEORETIC EQUICONTINUITY AND RIGIDITY</atitle><jtitle>数学物理学报(英文版)</jtitle><date>2022</date><risdate>2022</risdate><volume>42</volume><issue>2</issue><spage>769</spage><epage>773</epage><pages>769-773</pages><issn>0252-9602</issn><abstract>Given a topological dynamical system(X,T)and a T-invariant measure μ,let B denote the Borel σ-algebra on X.This paper proves that(X,B,μ,T)is rigid if and only if(X,T)is μ-A-equicontinuous in the mean for some subsequence A of N,and a function f ∈ L2(μ)is rigid if and only if f is μ-A-equicontinuous in the mean for some subsequence A of N.In particular,this gives a positive answer to Question 4.11 in[1].</abstract><pub>School of Mathematical Sciences and Center for Dynamical Systems and Differential Equations,Soochow University,Suzhou 215006,China</pub><doi>10.3969/j.issn.0252-9602.2022.02.021</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0252-9602 |
ispartof | 数学物理学报(英文版), 2022, Vol.42 (2), p.769-773 |
issn | 0252-9602 |
language | eng |
recordid | cdi_wanfang_journals_sxwlxb_e202202021 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
title | A NOTE ON MEASURE-THEORETIC EQUICONTINUITY AND RIGIDITY |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T16%3A52%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20NOTE%20ON%20MEASURE-THEORETIC%20EQUICONTINUITY%20AND%20RIGIDITY&rft.jtitle=%E6%95%B0%E5%AD%A6%E7%89%A9%E7%90%86%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Chiyi%20LUO&rft.date=2022&rft.volume=42&rft.issue=2&rft.spage=769&rft.epage=773&rft.pages=769-773&rft.issn=0252-9602&rft_id=info:doi/10.3969/j.issn.0252-9602.2022.02.021&rft_dat=%3Cwanfang_jour%3Esxwlxb_e202202021%3C/wanfang_jour%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=sxwlxb_e202202021&rfr_iscdi=true |