Positive Solutions and Infinitely Many Solutions for a Weakly Coupled System

We study a Schrödinger system with the sum of linear and nonlinear couplings. Applying index theory, we obtain infinitely many solutions for the system with periodic potentials. Moreover, by using the concentration compactness method, we prove the existence and nonexistence of ground state solutions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica scientia 2020-09, Vol.40 (5), p.1585-1601
Hauptverfasser: Duan, Xueliang, Wei, Gongming, Yang, Haitao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1601
container_issue 5
container_start_page 1585
container_title Acta mathematica scientia
container_volume 40
creator Duan, Xueliang
Wei, Gongming
Yang, Haitao
description We study a Schrödinger system with the sum of linear and nonlinear couplings. Applying index theory, we obtain infinitely many solutions for the system with periodic potentials. Moreover, by using the concentration compactness method, we prove the existence and nonexistence of ground state solutions for the system with close-to-periodic potentials.
doi_str_mv 10.1007/s10473-020-0523-9
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_sxwlxb_e202005023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>sxwlxb_e202005023</wanfj_id><sourcerecordid>sxwlxb_e202005023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-19b38b20a39f8d978950eed6079b218fd38a5fc462d44dae2933c841f15ba3303</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWD9-gLe9eohOJvuRHKX4UagoVPEYsrtJ2brNlmRru__elBX04mkG3veZgYeQKwY3DKC4DQzSglNAoJAhp_KITFhWIJUgimMyAczingOekrMQVgAsxzydkPlrF5q--TLJomu3fdO5kGhXJzNnG9f0ph2SZ-2GP6ntfKKTD6M_YzbttpvW1MliCL1ZX5ATq9tgLn_mOXl_uH-bPtH5y-NsejenFUfsKZMlFyWC5tKKWhZCZmBMnUMhS2TC1lzozFZpjnWa1tqg5LwSKbMsKzXnwM_J9Xh3p53VbqlW3da7-FGF_a7dl8pgFAEZII9dNnYr34XgjVUb36y1HxQDdVCnRnUqEuqgTsnI4MiE2HVL438f_A99A3-EcOI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Positive Solutions and Infinitely Many Solutions for a Weakly Coupled System</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Duan, Xueliang ; Wei, Gongming ; Yang, Haitao</creator><creatorcontrib>Duan, Xueliang ; Wei, Gongming ; Yang, Haitao</creatorcontrib><description>We study a Schrödinger system with the sum of linear and nonlinear couplings. Applying index theory, we obtain infinitely many solutions for the system with periodic potentials. Moreover, by using the concentration compactness method, we prove the existence and nonexistence of ground state solutions for the system with close-to-periodic potentials.</description><identifier>ISSN: 0252-9602</identifier><identifier>EISSN: 1572-9087</identifier><identifier>DOI: 10.1007/s10473-020-0523-9</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Analysis ; Mathematics ; Mathematics and Statistics</subject><ispartof>Acta mathematica scientia, 2020-09, Vol.40 (5), p.1585-1601</ispartof><rights>Wuhan Institute Physics and Mathematics, Chinese Academy of Sciences 2020</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-19b38b20a39f8d978950eed6079b218fd38a5fc462d44dae2933c841f15ba3303</citedby><cites>FETCH-LOGICAL-c322t-19b38b20a39f8d978950eed6079b218fd38a5fc462d44dae2933c841f15ba3303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/sxwlxb-e/sxwlxb-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10473-020-0523-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10473-020-0523-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Duan, Xueliang</creatorcontrib><creatorcontrib>Wei, Gongming</creatorcontrib><creatorcontrib>Yang, Haitao</creatorcontrib><title>Positive Solutions and Infinitely Many Solutions for a Weakly Coupled System</title><title>Acta mathematica scientia</title><addtitle>Acta Math Sci</addtitle><description>We study a Schrödinger system with the sum of linear and nonlinear couplings. Applying index theory, we obtain infinitely many solutions for the system with periodic potentials. Moreover, by using the concentration compactness method, we prove the existence and nonexistence of ground state solutions for the system with close-to-periodic potentials.</description><subject>Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0252-9602</issn><issn>1572-9087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWD9-gLe9eohOJvuRHKX4UagoVPEYsrtJ2brNlmRru__elBX04mkG3veZgYeQKwY3DKC4DQzSglNAoJAhp_KITFhWIJUgimMyAczingOekrMQVgAsxzydkPlrF5q--TLJomu3fdO5kGhXJzNnG9f0ph2SZ-2GP6ntfKKTD6M_YzbttpvW1MliCL1ZX5ATq9tgLn_mOXl_uH-bPtH5y-NsejenFUfsKZMlFyWC5tKKWhZCZmBMnUMhS2TC1lzozFZpjnWa1tqg5LwSKbMsKzXnwM_J9Xh3p53VbqlW3da7-FGF_a7dl8pgFAEZII9dNnYr34XgjVUb36y1HxQDdVCnRnUqEuqgTsnI4MiE2HVL438f_A99A3-EcOI</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Duan, Xueliang</creator><creator>Wei, Gongming</creator><creator>Yang, Haitao</creator><general>Springer Singapore</general><general>School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China%College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20200901</creationdate><title>Positive Solutions and Infinitely Many Solutions for a Weakly Coupled System</title><author>Duan, Xueliang ; Wei, Gongming ; Yang, Haitao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-19b38b20a39f8d978950eed6079b218fd38a5fc462d44dae2933c841f15ba3303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Xueliang</creatorcontrib><creatorcontrib>Wei, Gongming</creatorcontrib><creatorcontrib>Yang, Haitao</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta mathematica scientia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Xueliang</au><au>Wei, Gongming</au><au>Yang, Haitao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Positive Solutions and Infinitely Many Solutions for a Weakly Coupled System</atitle><jtitle>Acta mathematica scientia</jtitle><stitle>Acta Math Sci</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>40</volume><issue>5</issue><spage>1585</spage><epage>1601</epage><pages>1585-1601</pages><issn>0252-9602</issn><eissn>1572-9087</eissn><abstract>We study a Schrödinger system with the sum of linear and nonlinear couplings. Applying index theory, we obtain infinitely many solutions for the system with periodic potentials. Moreover, by using the concentration compactness method, we prove the existence and nonexistence of ground state solutions for the system with close-to-periodic potentials.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s10473-020-0523-9</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0252-9602
ispartof Acta mathematica scientia, 2020-09, Vol.40 (5), p.1585-1601
issn 0252-9602
1572-9087
language eng
recordid cdi_wanfang_journals_sxwlxb_e202005023
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Analysis
Mathematics
Mathematics and Statistics
title Positive Solutions and Infinitely Many Solutions for a Weakly Coupled System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A10%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Positive%20Solutions%20and%20Infinitely%20Many%20Solutions%20for%20a%20Weakly%20Coupled%20System&rft.jtitle=Acta%20mathematica%20scientia&rft.au=Duan,%20Xueliang&rft.date=2020-09-01&rft.volume=40&rft.issue=5&rft.spage=1585&rft.epage=1601&rft.pages=1585-1601&rft.issn=0252-9602&rft.eissn=1572-9087&rft_id=info:doi/10.1007/s10473-020-0523-9&rft_dat=%3Cwanfang_jour_cross%3Esxwlxb_e202005023%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=sxwlxb_e202005023&rfr_iscdi=true