Positive Solutions and Infinitely Many Solutions for a Weakly Coupled System
We study a Schrödinger system with the sum of linear and nonlinear couplings. Applying index theory, we obtain infinitely many solutions for the system with periodic potentials. Moreover, by using the concentration compactness method, we prove the existence and nonexistence of ground state solutions...
Gespeichert in:
Veröffentlicht in: | Acta mathematica scientia 2020-09, Vol.40 (5), p.1585-1601 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1601 |
---|---|
container_issue | 5 |
container_start_page | 1585 |
container_title | Acta mathematica scientia |
container_volume | 40 |
creator | Duan, Xueliang Wei, Gongming Yang, Haitao |
description | We study a Schrödinger system with the sum of linear and nonlinear couplings. Applying index theory, we obtain infinitely many solutions for the system with periodic potentials. Moreover, by using the concentration compactness method, we prove the existence and nonexistence of ground state solutions for the system with close-to-periodic potentials. |
doi_str_mv | 10.1007/s10473-020-0523-9 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_sxwlxb_e202005023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>sxwlxb_e202005023</wanfj_id><sourcerecordid>sxwlxb_e202005023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-19b38b20a39f8d978950eed6079b218fd38a5fc462d44dae2933c841f15ba3303</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWD9-gLe9eohOJvuRHKX4UagoVPEYsrtJ2brNlmRru__elBX04mkG3veZgYeQKwY3DKC4DQzSglNAoJAhp_KITFhWIJUgimMyAczingOekrMQVgAsxzydkPlrF5q--TLJomu3fdO5kGhXJzNnG9f0ph2SZ-2GP6ntfKKTD6M_YzbttpvW1MliCL1ZX5ATq9tgLn_mOXl_uH-bPtH5y-NsejenFUfsKZMlFyWC5tKKWhZCZmBMnUMhS2TC1lzozFZpjnWa1tqg5LwSKbMsKzXnwM_J9Xh3p53VbqlW3da7-FGF_a7dl8pgFAEZII9dNnYr34XgjVUb36y1HxQDdVCnRnUqEuqgTsnI4MiE2HVL438f_A99A3-EcOI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Positive Solutions and Infinitely Many Solutions for a Weakly Coupled System</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Duan, Xueliang ; Wei, Gongming ; Yang, Haitao</creator><creatorcontrib>Duan, Xueliang ; Wei, Gongming ; Yang, Haitao</creatorcontrib><description>We study a Schrödinger system with the sum of linear and nonlinear couplings. Applying index theory, we obtain infinitely many solutions for the system with periodic potentials. Moreover, by using the concentration compactness method, we prove the existence and nonexistence of ground state solutions for the system with close-to-periodic potentials.</description><identifier>ISSN: 0252-9602</identifier><identifier>EISSN: 1572-9087</identifier><identifier>DOI: 10.1007/s10473-020-0523-9</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Analysis ; Mathematics ; Mathematics and Statistics</subject><ispartof>Acta mathematica scientia, 2020-09, Vol.40 (5), p.1585-1601</ispartof><rights>Wuhan Institute Physics and Mathematics, Chinese Academy of Sciences 2020</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-19b38b20a39f8d978950eed6079b218fd38a5fc462d44dae2933c841f15ba3303</citedby><cites>FETCH-LOGICAL-c322t-19b38b20a39f8d978950eed6079b218fd38a5fc462d44dae2933c841f15ba3303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/sxwlxb-e/sxwlxb-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10473-020-0523-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10473-020-0523-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Duan, Xueliang</creatorcontrib><creatorcontrib>Wei, Gongming</creatorcontrib><creatorcontrib>Yang, Haitao</creatorcontrib><title>Positive Solutions and Infinitely Many Solutions for a Weakly Coupled System</title><title>Acta mathematica scientia</title><addtitle>Acta Math Sci</addtitle><description>We study a Schrödinger system with the sum of linear and nonlinear couplings. Applying index theory, we obtain infinitely many solutions for the system with periodic potentials. Moreover, by using the concentration compactness method, we prove the existence and nonexistence of ground state solutions for the system with close-to-periodic potentials.</description><subject>Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0252-9602</issn><issn>1572-9087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWD9-gLe9eohOJvuRHKX4UagoVPEYsrtJ2brNlmRru__elBX04mkG3veZgYeQKwY3DKC4DQzSglNAoJAhp_KITFhWIJUgimMyAczingOekrMQVgAsxzydkPlrF5q--TLJomu3fdO5kGhXJzNnG9f0ph2SZ-2GP6ntfKKTD6M_YzbttpvW1MliCL1ZX5ATq9tgLn_mOXl_uH-bPtH5y-NsejenFUfsKZMlFyWC5tKKWhZCZmBMnUMhS2TC1lzozFZpjnWa1tqg5LwSKbMsKzXnwM_J9Xh3p53VbqlW3da7-FGF_a7dl8pgFAEZII9dNnYr34XgjVUb36y1HxQDdVCnRnUqEuqgTsnI4MiE2HVL438f_A99A3-EcOI</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Duan, Xueliang</creator><creator>Wei, Gongming</creator><creator>Yang, Haitao</creator><general>Springer Singapore</general><general>School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China%College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20200901</creationdate><title>Positive Solutions and Infinitely Many Solutions for a Weakly Coupled System</title><author>Duan, Xueliang ; Wei, Gongming ; Yang, Haitao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-19b38b20a39f8d978950eed6079b218fd38a5fc462d44dae2933c841f15ba3303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Xueliang</creatorcontrib><creatorcontrib>Wei, Gongming</creatorcontrib><creatorcontrib>Yang, Haitao</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta mathematica scientia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Xueliang</au><au>Wei, Gongming</au><au>Yang, Haitao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Positive Solutions and Infinitely Many Solutions for a Weakly Coupled System</atitle><jtitle>Acta mathematica scientia</jtitle><stitle>Acta Math Sci</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>40</volume><issue>5</issue><spage>1585</spage><epage>1601</epage><pages>1585-1601</pages><issn>0252-9602</issn><eissn>1572-9087</eissn><abstract>We study a Schrödinger system with the sum of linear and nonlinear couplings. Applying index theory, we obtain infinitely many solutions for the system with periodic potentials. Moreover, by using the concentration compactness method, we prove the existence and nonexistence of ground state solutions for the system with close-to-periodic potentials.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s10473-020-0523-9</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0252-9602 |
ispartof | Acta mathematica scientia, 2020-09, Vol.40 (5), p.1585-1601 |
issn | 0252-9602 1572-9087 |
language | eng |
recordid | cdi_wanfang_journals_sxwlxb_e202005023 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Analysis Mathematics Mathematics and Statistics |
title | Positive Solutions and Infinitely Many Solutions for a Weakly Coupled System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A10%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Positive%20Solutions%20and%20Infinitely%20Many%20Solutions%20for%20a%20Weakly%20Coupled%20System&rft.jtitle=Acta%20mathematica%20scientia&rft.au=Duan,%20Xueliang&rft.date=2020-09-01&rft.volume=40&rft.issue=5&rft.spage=1585&rft.epage=1601&rft.pages=1585-1601&rft.issn=0252-9602&rft.eissn=1572-9087&rft_id=info:doi/10.1007/s10473-020-0523-9&rft_dat=%3Cwanfang_jour_cross%3Esxwlxb_e202005023%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=sxwlxb_e202005023&rfr_iscdi=true |